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Article title: The interaction of phylogeny and community structure: Linking the community1

composition and trait evolution of clades2

Running title: Clades’ variation in community composition3

1 Abstract4

Aim.5

Community phylogenetic studies use information about species’ evolutionary relationships to under-6

stand the ecological processes of community assembly. A central premise of the field is that species’7

evolution maps onto ecological patterns, and phylogeny reveals something more than species’ traits8

alone about ecological mechanisms structuring communities such as environmental filtering, com-9

petition, and facilitation. We argue, therefore, that there is a need to better understand and model10

the interaction of phylogeny with species’ traits and community composition.11

Innovation.12

We outline a new approach that identifies clades that are eco-phylogenetically clustered or overdis-13

persed, and then assesses whether those clades have different rates of trait evolution. Eco-phylogenetic14

theory would predict that the traits of clustered or overdispersed clades might have evolved dif-15

ferently, either in terms of tempo (fast or slow) or mode (e.g., under constraint or neutrally). We16

suggest that modelling the evolution of independent trait data in these clades represents a strong17

test of whether there is an association between species’ ecological co-occurrence patterns and evo-18

lutionary history.19

Main conclusions.20

Using an empirical dataset of mammals from around the world, we identify two clades of rodents21

whose species tend not to co-occur in the same local assemblages (are phylogenetically overdis-22

persed), and then find independent evidence of slower rates of body mass evolution in these clades.23

Our approach, which assumes nothing about the mode of species’ trait evolution but rather seeks24

to explain it using ecological information, presents a new way to examine eco-phylogenetic struc-25
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ture.26

Keywords: beta-diversity, trait evolution, mammals, phylogenetic scale, competition, environmen-27

tal filtering28
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2 Introduction29

Community phylogenetics (eco-phylogenetics) represents an attempt to link the evolutionary history30

of species to their present-day ecological interactions (Webb, Ackerly, McPeek, & Donoghue, 2002;31

Cavender-Bares, Kozak, Fine, & Kembel, 2009). The field is young but controversial, and some32

of its fundamental assumptions have been criticised (notably by Mayfield & Levine, 2010). Many33

community phylogenetic studies invoke niche conservatism (reviewed in Wiens et al., 2010) to assert34

that phylogenetic distance is a measure of distance in niche space, making phylogenetic structure a35

metric of ecological structure. Under such niche conservatism, phylogeny is often assumed to serve36

as a reasonable proxy for unmeasured functional traits [as the ‘Phylogenetic Middleman’—Swenson37

(2013); see also Peres-Neto, Leibold, & Dray (2012)]. Although useful, such use undervalues phy-38

logeny, which could be used to place (rather than approximate) species’ trait and distribution data39

within the context of past evolutionary and biogeographical processes that have shaped current40

patterns of species’ distributions and co-occurrences. In current approaches, we cannot disentangle41

species’ functional trait evolution from their functional trait ecology because we use phylogeny as42

a measure of both. There is, therefore, a need to better integrate evolutionary history into commu-43

nity phylogenetics that parallels advances in the field of comparative analysis, where phylogeny is44

increasingly viewed as the inferential backbone for models of species’ trait evolution, not simply as45

a statistical correction (e.g., Freckleton, Cooper, & Jetz, 2011).46

One of the earliest, and most commonly used, applications of community phylogenetic methods is47

to disentangle the impacts of niche-based processes such as environmental filtering and competition48

on community assembly (Webb, 2000; Cavender-Bares, Keen, & Miles, 2006). Here, it is assumed49

that a community of closely-related species (phylogenetic clustering) reflects environmental filtering50

on the basis of phylogenetically conserved traits, while the converse (phylogenetic overdispersion)51

implies competitive exclusion (Webb et al., 2002). A growing awareness that phylogenetic structure52

does not always match trait variation, even when assumptions of niche conservatism hold (Mayfield53

& Levine, 2010; Godoy, Kraft, & Levine, 2014; Cadotte, Davies, & Peres-Neto, 2017), has led many54

to separately estimate the phylogenetic and functional trait structures of communities and then55

contrast them (e.g., Kraft & Ackerly, 2010; Graham, 2012). Critically, however, such comparisons56
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do not capture the interaction between functional traits and phylogeny, i.e., how different ecological57

patterns in different clades may have arisen (evolved) and so shaped present-day species’ distribu-58

tions and co-occurrences. Because multiple ecological and evolutionary processes interact to affect59

eco-phylogenetic structure within the same phylogeny some clades may be functionally or phylo-60

genetically overdispersed while others are clustered: only a clade-based approach can detect and61

unpick these conflicting signals (see also Leibold, Economo, & Peres-Neto, 2010). Figure 1 gives62

a conceptual example of how common ecological processes can produce variation among clades’63

eco-phylogenetic structure. Using differences in ecological pattern among clades to guide ques-64

tions about ecological assembly is a form of phylogenetic natural history (Uyeda, Zenil-Ferguson,65

& Pennell, 2018).66

It is already well-appreciated in the eco-phylogenetic literature that different clades might demon-67

strate conflicting patterns, hinting at the interaction of ecological and phylogenetic structure (Ndiribe68

et al., 2013; Elliott, Waterway, & Davies, 2016). For example, the phylogenetic scale (e.g., clade69

crown age) of a study, and its relationship with spatial scale (e.g., spatial extent) has itself become70

an object of study (see Swenson, Enquist, Pither, Thompson, & Zimmerman, 2006; Vamosi, Heard,71

Vamosi, & Webb, 2009; Graham, Storch, & Machac, 2018). Parra, McGuire, & Graham (2010)72

were among the first to examine the contribution of different clades to an overall metric of phy-73

logenetic structure. Later work expanded node-based analysis to consider the separate structures74

of individual clades (Pearse, Jones, & Purvis, 2013), and others have examined clade-wise varia-75

tion in environmental and biogeographic structure (Leibold et al., 2010; Borregaard et al., 2014).76

Surprisingly, these advances in the measurement of clade-based eco-phylogenetic structure have77

been disconnected from clade-based advances in trait evolution (e.g., Beaulieu, Jhwueng, Boet-78

tiger, & O’Meara, 2012; Mazel et al., 2016) and phylogenetic diversification (e.g., Davies et al.,79

2004; Rabosky, 2014). This is despite early work linking the order of trait evolution to community80

composition (Ackerly, Schwilk, & Webb, 2006; Silvertown, Dodd, Gowing, Lawson, & McConway,81

2006).82

We suggest that one of the key assertions of community phylogenetics is that the evolution of species’83

traits is tied to their present-day ecological co-occurrences (Webb et al., 2002; Cavender-Bares et84
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al., 2009). A strong test of this assertion would be to link variation in the tempo or mode of trait85

evolution among clades with independent evidence of variation of community composition within86

those same clades. This goes beyond independently testing for phylogenetic structure of assemblages87

and traits (Swenson, 2013): it tests hypotheses that specific clades’ traits should evolve differently88

to cause, or as a consequence of, changes in the community composition of those clades (see figure89

1). Our approach looks to validate the assertion that variation among clades’ co-occurrences is a90

product of the interaction of phylogeny with ecology using independent trait data. Here we extend91

the β-diversity framework of Legendre & De Cáceres (2013) to quantify how the co-occurrence92

patterns of phylogenetic clades vary across sites. Using this method it is possible to detect clades93

whose species do, and do not, tend to co-occur (clustered and overdispersed clades; Webb et al.,94

2002), and thus detect and disentangle variation in ecological structure across the tree of life.95

In this paper, our fundamental goal is to test whether variation in present-day eco-phylogenetic96

structure can be used to predict past patterns of trait evolution. Our approach has two components:97

(1) the use of a novel β-diversity approach to detect clustered and overdispersed clades, and (2)98

the use of existing macro-evolutionary approaches to test whether those same clades have different99

rates or modes of trait evolution in comparison with the rest of the phylogeny. While we cannot100

experimentally test a causal link between present-day ecological structure and past evolution, we101

argue our approach provides a strong inferential test in the form of specific hypotheses about102

structures that are common across datasets. We apply our method to global mammal data (Fritz,103

Bininda-Emonds, & Purvis, 2009; Jones et al., 2009; Thibault, Supp, Giffin, White, & Ernest, 2011),104

where we find evidence for slower rates of body mass evolution in present-day overdispersed clades.105

By linking variation in clades’ ecological co-occurrences to variation in clades’ trait evolution, we106

show the power of phylogeny as data to help understand the evolution of ecological community107

assembly.108
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3 Methods109

All software referred to below in italics are packages for the R environment (R Core Team, 2017),110

and novel code written for this project is released in pez (in the function family clade.var ; Pearse et111

al., 2015, to be added after acceptance, and currently in the Supplementary Materials). The Supple-112

mentary Materials contain code (that, using suppdata, also fetches all data; Pearse & Chamberlain,113

2018) that reproduces our empirical example in its entirety.114

3.1 Overview and motivation115

It is often relevant to determine whether species within an assemblage are more related (phyloge-116

netically clustered) or less related (phylogenetically overdispersed) compared to some expectation117

of assembly from a larger set of species, from which patterns we hope to infer some ecological mech-118

anism. However, as outlined above, there is a growing understanding that such patterns are not119

necessarily uniform among the clades within a phylogeny (Leibold et al., 2010; Parra et al., 2010;120

Pearse et al., 2013; Borregaard et al., 2014; Graham et al., 2018). Indeed, phylogenetic clustering121

is an inherent property of clades : a phylogenetically clustered assemblage must have, by definition,122

one or more over-represented clades. Below we describe how these clade-wise patterns of clustering123

and overdispersion can be mapped onto a phylogeny, using an extension of existing approaches to124

partition β-diversity (where β-diversity is the variation in community composition among sites in a125

region of interest; Legendre & De Cáceres, 2013). By testing for differences in the evolution of such126

clades, we are able to evaluate the linkages between ecological and evolutionary processes, moving127

phylogeny from a proxy for traits to data to be explored in the context of traits.128

Figure 2 shows two assemblages (‘A’ and ‘B’) in an eight-species phylogeny; one of the clades is129

clustered, the other overdispersed. The general principle is clearer with species’ presence (‘1’) and130

absence (‘0’) data, but the calculations are the same for species’ abundances. While the variance131

(σ2) of each species’ occupancy of the two sites is the same (1/2), by summing the species’ occupancies132

within each clade the variance increases in the clustered clade but decreases in the overdispersed133

clade. When compared with simulations that provide null expectations of the expected variance in134
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different clades, it is therefore possible to locate significant clustered and overdispersed clades across135

different ecological assemblages. We note that the standard advice when calculating β-diversity of136

abundance data is to work with a transformed data matrix (typically a Hellinger transformation;137

Legendre & Gallagher, 2001). We do not do so here for clarity, and note that our simulations138

indicate our method is robust to such untransformed data.139

Once clades with different patterns of eco-phylogenetic dispersion have been identified, we can test140

whether the evolution of independent trait data differs within those clades (following Beaulieu et141

al., 2012). It is, of course, equally possible to test for variation in the evolution of clades first, and142

then to test the community composition of those clades using our β-diversity approach, as the two143

procedures are performed independently. In such cases, clades with outliers in a PGLS regression144

(see Freckleton et al., 2011), or the output from methods such as SURFACE (Ingram & Mahler,145

2013), bayou (Uyeda & Harmon, 2014), or BAMM (if shifts in speciation/extinction were of interest;146

Rabosky, 2014) could be used to select candidate clades. These clade-level tests directly map147

variation in ecological and evolutionary structure onto each other. Within this framework, phylogeny148

is not a mere proxy for missing species’ trait data (Mace, Gittleman, & Purvis, 2003; Srivastava,149

Cadotte, MacDonald, Marushia, & Mirotchnick, 2012; Swenson, 2013): the interaction between150

phylogenetic, community composition, and trait data provides novel insight into how evolutionary151

history is linked with ongoing ecological processes.152

We suggest that the main source of novelty in our approach is the comparison of trait evolution153

among clades with different co-occurrence patterns. Additionally, our method of detecting ecological154

variation among clades is novel, although alternative methods could be developed (e.g., extensions of155

phylogenetic fields approaches; Villalobos, Rangel, & Diniz-Filho, 2013). While there exist various156

approaches capeable of measuring clades’ patterns of eco-phylogenetic dispersion, our method is157

distinct from them. Firstly, and most importantly, it is a method for detecting variation in clade-158

level compositions (c.f. Ives & Helmus, 2011). Secondly, it compares multiple sites (c.f. Pearse et al.,159

2013) simultaneously as it measures β-diversity (figure 2 shows its application to two sites but the160

summations are the same for more than two sites and this is not a pairwise method). Thirdly, it161

does not seek to find clades that contribute to an overall pattern (c.g. Parra et al., 2010) but rather162
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identify contrasting patterns among clades. Finally, it models all species simultaneously and so163

does not compare species’ individual drivers of presence/abundance, making it capable of detecting164

clade-wide overdispersion (c.f. Leibold et al., 2010; Borregaard et al., 2014).165

Because our clade-wise test of phylogenetic dispersion is novel, so too are our definitions of overdis-166

persion and clustering (c.f. Webb, 2000; Webb et al., 2002; Cavender-Bares et al., 2009). Here we167

define a clustered clade not on the sole basis of presences within a single site, but rather the pattern168

of presences and absences across multiple sites. For example, the clustered clade in figure 2 would169

not traditionally have been considered clustered in site B. To emphasise this distinction, we refer170

to our patterns of phylogenetic structure as β-clustering and β-overdispersion.171

3.2 Extensions of β-diversity and significance tests172

The method of Legendre & De Cáceres (2013) estimates β-diversity as the variance in the site-173

by-species data matrix after some appropriate transformation of the data. In this context, our β-174

diversity partitioning extends the measurement of species’ individual contributions to total variance175

(sensu Legendre & De Cáceres, 2013) to consider clades’ contributions. This allows ecologists176

interested in comparing the contributions of species ((SCBD indices in Legendre & De Cáceres,177

2013)) and sites ((LCBD indices in Legendre & De Cáceres, 2013)) to β-diversity patterns to also178

compare the contributions of clades. While we focus solely on phylogenetic clades in this manuscript,179

we see no reason why this approach could not be applied to other (hierarchical) groups of species,180

such as those produced using functional traits (Petchey & Gaston, 2006) and interactions between181

species (Poisot, Guéveneux-Julien, Fortin, Gravel, & Legendre, 2017).182

We suggest two ways to assess the significance of a clade’s departure from the expected variance183

(the clade-level variances, σ2, in figure 2). The first is an ‘exact’ method based on the expectation184

of variances, and is described in the Supplementary Materials. The second method is based on the185

comparison of observed clade variances with null distributions of variances estimated via permu-186

tation (e.g., reshuffling species’ identities across the phylogeny, reviewed in Gotelli, 2000; Miller,187

Farine, & Trisos, 2017). Ranking a clade’s observed variance among its null variances would reveal188
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whether a clade has unusually high or low variance. The null model approach protects against cases189

where a clade whose members are entirely absent or omnipresent within a set of communities is190

highlighted as a clade with low variance (i.e., displaying no, or trivial, pattern).191

3.3 Simulations testing clade-level variation in β-diversity192

We used simulations to verify our method’s ability to detect variation in assemblage composition193

among clades. Below we describe each parameter of the simulation, listing each parameter in194

italics and its values across the simulations (in parentheses). We simulated phylogenies of nspp195

species (either 50 or 100) following a pure-birth Yule process (using geiger ; Pennell et al., 2014).196

We then selected a focal clade containing either 5–10% or 10–20% of the species in the phylogeny,197

and simulated a trait under Brownian motion (root set to 0, also using geiger ; Pennell et al.,198

2014) across the entire phylogeny with a σ2 (0.5, 1, 1.5, 2, 2.5; σ2
tree), excluding the focal clade,199

for which traits were simulated with σ2 a multiple of 10 greater or lesser than across the entire200

tree (×10−3, 10−2.75, 10−2.5, ..., 103; σ2
clade). We then simulated community assembly across nsite201

sites (either 50 or 100) based on the simulated trait values: in each site, we randomly selected a202

species and then drew community members based on their trait distance from the first randomly203

selected species. Species with absolute differences in simulated traits ≥ 1 from the focal species204

were assigned a probability of membership of 0, and a species with a difference of |0.5| would have205

a probability of 0.5. We acknowledge that this mapping between trait difference and probability206

of co-occurrence is arbitrary, but its simplicity makes it straightforward to consider the impact of207

a variety of parameter combinations and thus makes our results easier to generalise. In related208

simulations, however, we saw little evidence that varying this relationship qualitatively affected our209

method’s performance.210

These simulations represent a form of ecological assembly that is deliberately agnostic with regard211

to any particular ecological mechanism (e.g., facilitation, competition, or environmental filtering),212

but, as illustration, they can be matched to the scenario of environmental filtering shown in figure213

1. In regards to patterns of co-occurrence, a clade can evolve faster than the rest of the phylogeny214
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(such that σ2
clade > σ2

tree in our simulations), in which case we would expect close-relatives to rarely215

co-occur within a clade (a β-overdispersed clade; see figure 2). A clade can also evolve slower than216

the rest of the phylogeny (σ2
clade < σ2

tree), in which case we would expect close-relatives to frequently217

co-occur (a β-clustered clade; see figure 2). Even in simulations where σ2
clade = σ2

tree, we still evolved218

a separate trait for the focal clade, making this an extremely conservative test of our method as219

assembly was always based on a different trait in the focal clade.220

We repeated simulations across all combinations of our parameter values, and an additional 20 times221

for each combination with identical σ2
tree and σ2

clade, resulting in a total of 2160 simulations. For222

each simulation, we ranked the observed variance of the focal clade within 9, 999 permutations (the223

observed value was included as part of the null distribution, totalling 10, 000 values for each null224

distribution), swapping species’ identities on the phylogeny and keeping everything else constant.225

These rankings provide probabilities under the null hypothesis: values greater than 0.975 suggest226

β-clustering (at α5%) and values lesser than 0.025 suggest β-overdispersion. The comparisons to the227

null distributions provide a test of whether our method can reliably detect β-overdispersion (ranked228

in the bottom 2.5% when σ2
clade > σ2

tree), β-clustering (ranked in the top 2.5% when σ2
clade < σ2

tree),229

and whether it is vulnerable to false-positives (ranked in the top or bottom 5% when σ2
clade = σ2

tree—a230

type I error). Note that clades are hierarchically nested, and so they are not necessarily independent.231

While we make reference to this in the discussion, we do not conduct simulations to investigate this232

further, as it is a feature that has been discussed at length in the literature (e.g., Alfaro et al.,233

2009). We draw the reader’s attention to the fact that we conducted these simulations over a range234

of parameter values, with the explicit aim of finding the conditions under which our method performs235

well and where it underperforms (i.e., across the range of parameters in our simulations).236

3.4 Empirical example: rodent communities237

There are two steps to our empirical analysis. In our first step, we examine the β-diversity of all238

lineages, and use these calculations to detect the clades that most strongly depart from the overall239

β-diversity patterns. In our second step, we fit a model of trait evolution across the complete240
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phylogeny to assess whether the evolution of those same clades differs from that of the rest of the241

phylogeny. Our aim is to evaluate whether clades with different β-diversity in the present show242

evidence of different trait evolution in the past. Above, we argued that this forms a strong test243

of the imprint of past evolution on present-day ecology, as it sets up explicit hypotheses across244

different datasets.245

To provide an empirical example of our approach, we present an analysis of a rodent dataset. We246

took data from a mammal community dataset (Thibault et al., 2011), phylogeny [Bininda-Emonds247

et al. (2007), updated by Fritz et al. (2009)], and body mass from a large database for mammal traits248

(Jones et al., 2009). This community dataset covers a number of continents and community types,249

and body mass is known to be a good proxy for ecological interactions in rodents (see Thibault et al.,250

2011). Excluding species not covered in all three datasets (community, phylogeny, and traits) left251

us with abundance information for 483 species across 939 sites (assemblages) worldwide. Following252

the method described above, we identified clades’ β-diversity and assessed statistical significance253

by comparison to 9, 999 species-identity randomisations (Kembel et al., 2010).254

We fitted Brownian motion and Ornstein-Uhlenbeck (OU) models using OUwie (Beaulieu et al.,255

2012) to the (log-transformed) body mass data. We contrasted models with shared and varying pa-256

rameters for our clades identified as having significantly different ecological β-diversity (see above);257

support for Brownian and OU models with different parameters for these clades would suggest a258

link between ecological trait-based assembly and trait evolution. OUwie requires the user to specify259

which clades are to be tested for differing rates of trait evolution, and our β-diversity analyses (see260

above) provided this information. Where hierarchically-nested clades were identified, we selected261

the oldest clade as this is more conservative (the ‘cascade’ problem; see Discussion) and parameter262

estimation is more accurate in larger clades (Beaulieu et al., 2012). In the Supplementary Materials,263

we present results of a series of permutation tests that we performed to ensure that our evolutionary264

model-fitting was not biased towards finding support for particular evolutionary hypotheses.265
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4 Results266

Results from our simulations are presented in table 1 and figure 3, and show that our method267

powerfully and reliably detects variation in phylogenetic structure among clades. Our method has268

strong statistical power to detect β-clustering (higher variance within a clade; the red line in figure269

3), and a somewhat reduced power to detect β-overdispersion (lower variance within a clade; the270

blue line in 3). As shown in table 1, however, greater sampling modifies this: sampling 100 species271

across 100 sites additively increases the ranking of the observed variance by 10% (i.e., from the .85272

quantile to the .95) in comparison with 50 species across 50 sites. Our method shows a tendency273

to spuriously suggest support for β-clustering (i.e., overall inflated type I error rates in simulations274

of 24% at two-tailed α5%; see figure 3), but again this varies depending on the context. As shown275

in table 1, focal clades that make up large proportions of the total data are more likely to be276

erroneously identified as β-clustered: if the focal clade contains 10 of the 100 species in a system277

(nsites = 50, σ2=1) the predicted quantile is 0.77, but if the clade contains 20 species (i.e., 20%278

of the species) that prediction rises to 0.95. Neither of these expected quantiles are statistically279

significant at α5% (i.e., they are all < 0.975) and so this is not indicative of the method having280

problems with type I error rates. As we highlighted above, we explored a wide parameter space in281

our simulations to highlight where our method performs well and where it performs poorly. Thus,282

the raw results plotted in figure 3 do not necessarily reflect our average expectations for performance283

of our method.284

In our analyses of the rodent dataset, we focused on two clades (marked on figure 4): the Sciuri-285

dae (squirrels) and their sister family the Gliridae (dormice), and the Echimyidae (a Neotropical286

rodent family) and some close relatives within what is sometimes called the Caviomorpha (e.g.,287

South American rodents like the guinea pig). We refer to these two groups as the ‘squirrels’288

and ‘cavies’, respectively. Both these clades were identified as having low variance (phylogenetic289

β-overdispersion). Note that our method also detected clades indicative of β-clustering (high vari-290

ance). As the low-variance clades are nested within these high-variance clades, we suggest they291

might reflect important eco-evolutionary shifts. The detection of both phylogenetic β-clustering292

and β-overdispersion demonstrates the ability of our method to reveal both kinds of structure in293
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empirical datasets.294

We find that the squirrel and cavi clades were also characterised by different rates of trait evolution295

(table 2). The top four models, with δAIC less than 5, all supported different rates of body296

mass evolution for these two clades in comparison with the rest of the phylogeny. The alternative297

hypothesis, that trait evolution is constant across the squirrels, cavies, and the rest of the mammal298

phylogeny, was the fifth-ranked model with a δAIC of 14.9 and so has little support (Burnham299

& Anderson, 2002). The lowest-AIC model favoured a simple three-rate Brownian motion model300

in which the rate of body mass evolution in squirrel and cavi clades is significantly slower, most301

notably in the squirrel clade. In the Supplemental Materials we present additional simulations that302

test whether our findings are a result of a bias in our phylogenetic or trait data. These simulations303

reveal that, if anything, our data are biased against the pattern that we observe, and so give greater304

strength to our findings.305
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5 Discussion306

We have presented a novel method for identifying clades (groups) of species whose co-occurrences307

differ from other species across a set of communities. Simulating species’ phylogenies and trait-308

based community assembly processes, we demonstrated that the method reliably detects shifts in309

the variance of species’ occupancies, identifying different phylogenetic structures. Most importantly,310

however, we have also shown, using empirical data, that the tempo of trait evolution shifts within311

clades associated with differing present-day assemblage compositions. To the best of our knowl-312

edge, this is the first test of the hypothesis that the evolution of traits within a clade is associated313

with its co-occurrence patterns. By linking variation among clades’ co-occurrence patterns with314

independent evidence for variation in those clades’ rates of trait evolution, we have found evidence315

for an interaction between evolutionary and ecological information. We argue that our approach,316

combining evidence of both ecological and evolutionary patterns, has more power to answer ques-317

tions about the underlying eco-evolutionary drivers of community assembly than methods focusing318

singularly on phylogenetic or trait data alone.319

5.1 Variation in β-diversity in community phylogenetics320

The use of phylogeny as a proxy for ecological process has been criticised. It has been argued321

that there is little need for phylogeny if we already have functional traits (Swenson, 2013), and322

phylogenetic pattern rarely maps directly onto ecological process (a critique that applies equally323

to functional traits; Mayfield & Levine, 2010). However, we have suggested one central premise324

of community phylogenetics is that there is an association between the evolution of species’ traits325

and the phylogenetic structure of the communities in which they are found. For example, that326

competition among species might drive character displacement, such that co-occurring species differ327

in their functional traits. Many community phylogenetic studies, like ours, examine the tempo and328

mode of trait evolution within their system (e.g., Swenson et al., 2006; Kraft, Cornwell, Webb, &329

Ackerly, 2007), but few have asked how trait evolution and community phylogenetic structure are330

linked and feed back into each other. Simple measures of phylogenetic signal assume complete,331
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or at least unbiased, taxon sampling (Pagel, 1999; Blomberg, Garland, & Ives, 2003), and so eco-332

phylogenetic structure, which, by definition, implies non-random taxonomic representation, may333

mask underlying (true) patterns of trait evolution. Our approach offers a coherent framework to334

test for links between the macro-evolutionary dynamics of clades and their present-day community335

compositions. We acknowledge that our study does not sample or examine all rodent species, and336

that other processes undoubtedly influenced body size evolution. Nonetheless, we were able to337

detect a significant association between trait evolution and species’ co-occurrences, and this strong338

test in independent data suggests that incomplete taxon sampling is unlikely to have biased our339

findings.340

Despite conceptual issues, the utility of phylogeny in predicting species’ traits (Guénard, Legendre,341

& Peres-Neto, 2013), Janzen-Connell effects (Gilbert & Webb, 2007), invasion success (Strauss,342

Webb, & Salamin, 2006), and ecosystem function (Cadotte, Albert, & Walker, 2013) suggests343

phylogeny will remain a useful (Tucker, Davies, Cadotte, & Pearse, 2018), if imperfect (Cadotte et344

al., 2017; Mazel et al., 2018), proxy in ecology for some time. Yet we suggest that phylogeny is more345

than just a surrogate for unmeasured traits, and that it provides us with the ability to link patterns346

and processes in ecology and evolution. Here, we map patterns in separate ecological assemblage347

and species trait datasets onto each other, linking them by treating phylogeny in and of itself348

as data in two separate analyses. Our approach does not invoke niche conservatism, but rather349

seeks to understand how traits have evolved and can explain patterns of species co-occurrences350

across local communities (though other spatial units, such as biogeographical zones, could equally351

be considered). As such, there is no requirement that closely related species are more ecologically352

similar or compete more strongly, eco-phylogenetic assumptions that have been heavily criticised353

(Cahill, Kembel, Lamb, & Keddy, 2008; Mayfield & Levine, 2010). Our results simply support a354

link between the ecological interactions (as measured by β-diversity) of clades and the evolutionary355

history of those clades. The evolutionary patterns we observe come from interactions, or the absence356

of interactions, that occurred over millions of years, potentially in assemblages very different to those357

we see today. Our analyses indicate that these past interactions have left an imprint on present-358

day community assembly, and imply that future evolutionary trajectories may be influenced by359
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present-day species interactions.360

In our analysis of small mammal assemblages, we showed that the cavi and squirrel clades, whose361

members tended not to co-exist (their clade variances were low), have lower rates of trait evolution362

(table 2). Rodent body size is a driver of ecological competition (Bowers & Brown, 1982; Ernest,363

2005), and our results are consistent with slower evolution of body size being a driver of variation in364

the present-day composition of our small-mammal assemblages. The clades we have focused on are365

relatively small and young (see figure 4), and previous work (Ackerly et al., 2006; Silvertown et al.,366

2006) has suggested that traits that evolve early and late in the evolutionary history of a clade may367

affect ecological assembly differently. Our results imply that it is not just the timing of body size368

evolution that may be important, but also its rate of evolution. We do not yet know what caused369

this slow-down in the capi and squirrel clades and whether these associations are driven by changes370

in diversification rate (which can be confounded with trait evolution; FitzJohn, 2010). There is,371

however, some evidence that younger clades tend to co-occur more than older ones (Pearse et al.,372

2013; Parmentier et al., 2014). We caution, however, that our results are correlational. While our373

OU models’ greater α parameters might be consistent with strong stabilising selection [Uyeda &374

Harmon (2014); but see Pearse et al. (2018)], as with any historic study of biogeography we cannot375

definitively rule out some other process driving the patterns we have detected. In particular, we do376

not consider the impact of (historic) dispersal limitation on species’ distributions.377

5.2 Method performance378

We show that our method has good statistical power, and compares favourably to the widely used379

NRI (often called SESMPD) and NTI (SESMNTD) metrics of phylogenetic community structure, for380

which statistical power can be (in some circumstances) less than or equal to 20% (Kraft et al., 2007)381

and 60% (Kembel, 2009). In some cases, however, we observed inflated type I error rates relative to382

these other methods (see below for discussion). In many ways these are unfair comparisons, given383

that our approach makes use of information from multiple sites (although the number of species384

with phylogenetic structure is comparable), which we would argue is a strength of our method.385
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Phylogenetic Generalised Linear Mixed Models (Ives & Helmus, 2011) also use many sites at once,386

and our results compare favourably to this approach (87% detection rate for phylogenetic clustering,387

53% for overdispersion, but with fewer sites than in our study). It is important to note, however,388

that these alternative methods are intended to answer different questions, and none of them were389

designed to measure what we term β-dispersion. We make these comparisons simply to demonstrate390

that our approach performs reasonably in comparison with others, even in simulations where the391

number of species in a focal clade could be as low as 5 and the datasets themselves small (50 species392

or sites).393

Our simulations show that, in cases where the focal clade makes up a large proportion of the394

species under study (in our simulations, over 20%) type I error rates could be inflated. We do395

not feel that this is of concern, for several reasons. First, within our framework, clades must be396

detected as significant both in terms of their present-day co-occurrence patterns and also their his-397

toric trait evolution. As such, spurious identification of structured clades would tend to weaken398

any association between their ecology and evolution. Second, it is rare that ecological assemblages399

are truly randomly structured: the norm is for them to display some degree of phylogenetic struc-400

ture (Vamosi et al., 2009). We suggest most biologists may be more interested in detecting the401

difference between β-overdispersion and β-clustering, not β-overdispersion or β-clustering versus402

random assembly. This is the case in our empirical example, where we examined clades that were403

β-overdispersed whose sisters were β-clustered. We also note that type I error rates can be even404

higher for other, more commonly used, metrics of phylogenetic structure. For example, SESMPD,405

when estimated by taxa-shuffling (‘richness’) null distributions such as we employ here, can have406

type I error rates of c. 50% (Kembel, 2009; Miller et al., 2017).407

5.3 Potential methodological extensions408

Like similar approaches (Parra et al., 2010; Pearse et al., 2013; Borregaard et al., 2014), our method409

does not directly consider nestedness (see also Ulrich, Almeida-Neto, & Gotelli, 2009), where the410

significance of a clade ‘cascades’ up into higher super-sets of hierarchical groupings (c.f. the ‘trickle-411
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down’ problem in diversification analysis; Purvis, Nee, & Harvey, 1995; Moore, Chan, & Donoghue,412

2004). One possible extension would be to compare each clade with the summed clades subtending it413

(not, as in the method we are presenting, the species within it). As such each clade in a fully resolved414

phylogeny would have its variance compared with the variances of the two clades subtending it (our415

supplementary code permits this). Significance could be tested through null permutation, as done416

in this study, or potentially through nested ANOVAs. However, we suggest that this cascading is417

not so much a limitation but rather a matter of interpretation; that a group is β-clustered because418

it contains other β-clustered groups does not strike us as problematic. A balanced approach could419

limit the study to particular clades on the basis of age or other variable of interest, or to hold420

problematic clades constant in null randomisations.421

We also note that our approach for identifying ecological patterns among clades does not incor-422

porate phylogenetic branch lengths. Branch lengths inform models of trait evolution, and so for423

our purposes of mapping independent evolutionary pattern onto ecological pattern we consider it424

undesirable to have branch lengths play a role in both aspects. For those interested in incorporating425

branch lengths in other situations, a simple approach would be to multiply each species’ abundance426

by its evolutionary distinctiveness (Isaac, Turvey, Collen, Waterman, & Baillie, 2007) or another427

measure of its phylogenetic uniqueness (e.g., Redding & Mooers, 2006; Cadotte et al., 2010; Hipp428

et al., 2018). However, depending on the question at hand this might ‘average out’ the signal429

of interest. For example, if community composition varies with phylogenetic scale (Webb et al.,430

2002; Cavender-Bares et al., 2009; Vamosi et al., 2009), it might be better to model the standard431

effect size (SES; sensu Kembel, 2009) of node variance as a function of node age (see Pearse et al.,432

2013).433

5.4 Conclusion434

We suggest that the identification of clades with different co-occurrence patterns is of at least435

as much interest as the summary statistics that have been used frequently to describe overall436

phylogenetic assemblage structure but which map only poorly to ecological process. Further, we437
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see the establishment of links between assemblage structure and the evolution of species’ traits as438

a central goal of community phylogenetics that has rarely been achieved. As a field, community439

phylogenetics is well-placed to take advantage of recent advances in trait evolution (Pennell &440

Harmon, 2013; Nuismer & Harmon, 2015) and eco-phylogenetic theory (Pigot & Etienne, 2015). We441

have outlined here an approach to directly test links between the processes of community assembly442

and the evolution of species’ traits. As we gain a firmer grasp of assemblages’ phylogenetic structure,443

we can begin to model it as data, not merely measure its pattern.444
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Figure legends639

Figure 1. Linking clades’ evolution and community assembly. Here we give an example640

of how clade-level variation in community structure (the tendency for close/distant relatives to co-641

occur) might arise. We consider a set of species that are initially filtered within some biogeographic642

(or meta-community) context; perhaps the clade is widespread but not all its members are present643

in every continent/region, for example. A trait, represented by the size of the circles at the tips of644

the phylogeny, evolves across the phylogeny, but evolves faster in one clade (the red branches) and645

slower in another (the blue branches). Ecological community assembly on the basis of this trait,646

regardless of mechanism, will result in different eco-phylogenetic structures across these clades.647

Re-framing our eco-phylogenetic analysis in terms of clades allows for the generation of falsifiable648

hypotheses about how species’ ecology and evolution interact. In this study, we use evidence of649

variation in the co-occurrences within clades to test for variation in the evolution of those traits.650

It would also be possible to find clades with differing evolutionary patterns, and then use these651

to test for differing methods of ecological assembly and co-existence within those same clades. We652

emphasise that this diagram is but one example of how ecological assembly and the macro-evolution653

of species’ traits could interact. While we do not show the interaction of fitness and niche differences654

on species’ co-occurrence (sensu Chesson, 2000; Mayfield & Levine, 2010), we see no reason our655

approach could not be applied to more complex models of ecological assembly. Equally, while there656

may be null models that allow investigators to partial out the influences of some of these patterns657

and processes, the aim of our approach is to statistically model, and so better understand, them.658

The eco-phylogenetic terms in this diagram match onto those in figure 2 where we outline our new659

method, and the colours match onto those in figure 3 where we test our method’s statistical power660

through simulation and figure 4 where we apply our method to an empirical dataset.661

Figure 2. Overview of variance-based method for the detection of variation in clades’662

eco-phylogenetic structure. A horizontal dashed line splits the phylogeny into two clades: one663

has an overdispersed community phylogenetic structure (close relatives are unlikely to co-occur),664

and the other a clustered structure (close relatives are likely to co-occur). It is these two kinds of665

eco-phylogenetic structure that our method aims to detect, and that we suggest, in the main text,666
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could be termed β-overdispersion and β-clustering to emphasise their focus on eco-phylogenetic667

structure across multiple sites simultaneously. A vertical grey dashed line separates species and668

grouped clade calculations. To the left of the vertical line, the occurrences of each species in two669

assemblages (A and B) are shown alongside the variance (σ2) of each species’ occurrences across the670

assemblages; all species have the same variance (1/2). To the right of the vertical line, community671

occurrences for the species have been summed: the variance of these occurrences is now much lower672

for the overdispersed clade and much higher for the clustered clade. For simplicity, we use binary673

presence-absence data in only two sites as an illustration, but this method can be applied to species’674

abundances within any number of assemblages. While there is an analytical expectation for clade-675

level variances (see text) we recommend using ecological null models to assess the significance of676

clade-level patterns. Note that when more than two sites are considered, a single variance value for677

each species is calculated across all species’ presences and absences (or abundances).678

Figure 3. Simulations showing how method performance increases with effect size. In679

grey, the observed variances’ quantiles are shown for when there was no difference between the680

model of trait evolution in the focal clade and the rest of the phylogeny. The mean of these values,681

along with the percentage of values lying beyond the 2.5% and 97.5% quantiles, are shown in black.682

In light blue, the probabilities for the β-overdispersed (low variance; σ2
clade > σ2

tree) are shown,683

along with a quasi-Binomial GLM prediction in darker blue. In orange, the probabilities for the684

β-clustered (high variance; σ2
clade < σ2

tree) are shown, along with a quasi-Binomial GLM prediction685

in red. At an α5%, a predicted quantile of 0.025 or 0.975 would provide statistical support for the686

focal clade being β-clustered or overdispersed, respectively. None of these curves account for the687

additional explanatory variables used in the models in table 1, and thus these curves are conservative688

but can be interpreted in the context of the parameters within table 1 to generate predictions for689

any parameter combination. These figures show the raw data (i.e., each point is the result of a690

single simulation) used to parameterise the models shown in table 1. In the main text, we define the691

terms β-overdispersion and β-clustering as referring to eco-phylogenetic structures in clades across692

sites.693

Figure 4. Empirical mammal results showing associations between clades’ co-occurrences694
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and their rates of body mass evolution. To the left and right, the phylogeny of all 483 mam-695

mals in the study. Two large red circles on the nodes of each phylogeny indicate the two ‘squirrel’696

and ‘cavi’ clades tested in the evolutionary analysis (see text and table 2). The left-hand phylogeny697

is coloured according to the ranking of the clades’ variances; a quantile of 0 (red; see legend) would698

indicate a clade whose variance was lower than all 9, 999 null permutations, and a quantile of 1699

(blue; see legend) a clade whose variance was higher than all 9, 999 null permutations. In the700

centre, a site-by-species matrix of relative abundance in all 939 assemblages, with a colour-scale701

indicating relative abundance (see legend at bottom; more abundant species in red, absent species702

in white). Each of the 939 assemblages (sites) is a column in this matrix, and each of the species703

a row that maps onto the phylogenies to the left and right. This represents the raw data used to704

calculate the clades’ variances. The right-hand phylogeny is shaded according to a reconstruction of705

body mass (g) across the phylogeny (using phytools;g Revell, 2012). Although this reconstruction706

does not explicitly model variation in rate among clades, variation in size across its branches can be707

seen. In the main text, we define β-overdispersion and β-clustering as eco-phylogenetic structures708

of overdispersion and clustering that are detectable only across multiple sites simultaneously.709
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Estimate Std Err z p
Intercept (nspp = nsites = 50) −0.5964 0.4288 −1.39 0.1649

log10(
σ2
tree

σ2
clade

) 0.8362 0.1543 5.42 0.0000

nclade 0.4772 0.0829 5.76 0.0000
σ2
tree 0.1238 0.2099 0.59 0.5555

Contrast—nspp = 100 −0.3004 0.3862 −0.78 0.4370
Contrast—nsites = 100 0.3508 0.2383 1.47 0.1416

(a) β-clustering (higher variance)

Estimate Std Err z p
Intercept (nspp = nsites = 50) 1.0324 0.2851 3.62 0.0003

log10(
σ2
clade

σ2
tree

) −2.2238 0.1565 −14.21 0.0000

nclade −0.0149 0.0257 −0.58 0.5627
σ2
tree −0.1043 0.1488 −0.70 0.4836

Contrast—nspp = 100 −0.0686 0.2123 −0.32 0.7467
Contrast—nsites = 100 0.0082 0.1665 0.05 0.9609

(b) β-overdispersion (lower variance)

Estimate Std Err z p
Intercept (nspp = nsites = 50) 0.7030 0.0292 24.10 0.0000
nclade 0.0153 0.0029 5.19 0.0000
σ2
tree −0.0439 0.0168 −2.61 0.0092

Contrast—nspp = 100 −0.0021 0.0237 −0.09 0.9298
Contrast—nsites = 100 −0.0173 0.0189 −0.92 0.3599

(c) Null (no difference in variance)

Table 1: Simulations showing how method performance varies as a function of phylogeny
and clade size, rate of trait evolution, and effect size. Each sub-table shows the results of
modelling the observed quantiles of focal clades’ variances in simulations of β-clustering (higher
variance; a), overdispersion (lower variance; b), and random assembly (null, no difference; c) across
the simulations. At an α5%, a predicted quantile of 0.025 or 0.975 would provide statistical support
for the focal clade being β-clustered or overdispersed, respectively. Generalised Linear Models with
a quasi-binomial error structure were used to account for non-normality of errors in the β-clustering
(a) and overdispersion (b) models, and so coefficients are reported on the logit scale. In (a), a greater
statistical power to detect β-clustering is most strongly associated with the number of species in
the focal clade and the difference in evolutionary rate between the focal clade and the rest of the
phylogeny (deviance: null529 = 105.98 and residual524 = 67.07; estimated dispersion = 0.30).
In (b), a greater statistical power to detect overdispersion is most strongly associated with the
difference in evolutionary rate between the focal clade and the rest of the phylogeny and the number
of sites sampled (deviance: null531 = 262.32 and residual526 = 138.95; estimated dispersion =
0.34). In (c), there is a slight tendency for larger focal clades to appear more β-clustered, and
for faster-evolving traits to drive β-overdispersion, even when focal clades evolve under the same
model as the rest of the phylogeny (F4,919 = 11.99; r2 = 4.96%; p < 0.0001). We recommend that
more attention should be paid to coefficient sizes than statistical significance in these models, since
statistical significance can be driven by sample size and these are the results of simulations.
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θ0 θc θs σ0 σc σs α0 αc αs δAIC

— — — 53 32 1.12 — — — 0.00
2.14±0.42 5.38±1.53 2.00±1.39 52 30 1.12 0.00 1.13
2.14±0.42 5.38±720.76 2.05±0.52 51 0.00 0.00 49 1.54
2.15±0.42 352.83±159.69 -15.44±130.72 52 30 1.1 0.00 0.00 0.00 5.00

— — — 58 — — — 14.90
2.17±0.44 58 58 16.90
2.14±0.44 5.32±1.70 1.96±1.25 57 57 17.00

Table 2: Results of log(body mass) evolutionary modelling. Above are the θ (optimum), σ
(rate), and α (rate of return to optimum) estimates, along with AIC and δAIC values, for all trait
evolution models. Each row represents a different model; ‘—’ is used to indicate when a parameter
is not fit in a model, and where only a single estimate for a parameter is given (e.g., θ0) only a
single parameter was fit across the whole phylogeny. Thus rows one and four represent Brownian
motion (models with no optima), and all other rows are variants of Ornstein-Uhlenbeck models.
In subscripts of parameters, ‘c’ refers to the ‘capi’ clade, ‘s’ to the ‘squirrel’ clade, and ‘0’ to the
remainder of the phylogeny. See text and figure 4 for a description of these species making up each
clade. The α and σ estimates have been multiplied by 10−4 for brevity of presentation. The four
most likely models according to δAIC all contain clade-level variation, strongly supporting different
patterns of evolution in the clades highlighted by the variation in β-diversity among clades (see
text).
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