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Abstract 

This paper extends the definition of the one sided radiation impedance of a panel mounted in an 
infinite rigid baffle which was previously used by the authors so that it can be applied to all 
transverse velocity wave types on the panel rather than just to the possibly forced travelling plane 
transverse velocity waves considered previously by the authors. For the case of travelling plane 
waves on a rectangular panel with anechoic edge conditions, and for the case of standing waves 
on a rectangular panel with simply supported edge conditions, the equations resulting from one of 
the standard reductions from quadruple to double integrals are given. These double integral 
equations can be reduced to single integral equations, but the versions of these equations given in 
the literature did not always converge when used with adaptive integral routines and were 
sometimes slower than the double integral versions. This is because the terms in the integrands in 
the existing equations have singularities. Although these singularities cancel, they caused 
problems for the adaptive integral routines. This paper rewrites these equations in a form which 
removes the singularities and enables the integrals in these equations to be evaluated with 
adaptive integral routines. Approximate equations for the azimuthally averaged one sided 
radiation impedance of a rectangular panel mounted in an infinite baffle are given for all the cases 
considered in this paper and the values produced by these equations are compared with numerical 
calculations. 
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1. Introduction 

The acoustical radiation impedance of one side of a finite rectangular panel mounted in an infinite 
rigid baffle is of importance for the prediction of sound insulation [1-5], sound absorption [1, 6-
8], sound directivity [9] and sound scattering. It occurs naturally when variational techniques are 
used to solve these phenomena [1, 2, 7, 8]. The normalized real part of the acoustical radiation 
impedance of one side of a finite rectangular panel mounted in an infinite rigid baffle is also the 
panel’s one sided acoustic radiation efficiency. 

The authors [10-12] have recently defined the radiation impedance of a plane panel mounted in an 
infinite plane baffle as the average of the specific acoustic impedance over the surface of the 
rectangular panel when a possibly forced plane transverse velocity wave is propagating on the 
surface of the rectangular panel. It was assumed that the edges of the panel were anechoic. This is 
the appropriate assumption for a forced wave, because after the forced wave is reflected at the 
edges of the panel, it propagates with the free wave number of the panel rather than with the 
forced wave number and hence has a different radiation impedance unless the incident wave was 
also freely propagating. 

This definition works because the possibly forced plane wave has the same root mean square 
(rms) transverse velocity over time at all points of the panel. When the radiation impedance of 



 

other wave types on the panel, such as standing waves, is considered, this definition breaks down 
because the rms transverse velocity over time will possibly differ over the panel and may be zero 
at some points. Where the rms transverse velocity over time is zero, the specific acoustic 
impedance will be infinite and its average over the panel may not be finite. This paper gives a 
definition of the radiation impedance of a transverse wave on a panel which gives the same result 
for a travelling plane wave as the definition previously used by the authors. 

The definition of radiation impedance involves a quadruple integral. For a rectangular panel with 
a travelling plane wave or for a mode of a simply supported panel, this quadruple integral can be 
reduced to a double integral using a standard technique [1, 13-15]. In both these cases this double 
integral can be reduced to a much more complicated single integral. However when the single 
integral equations for real part of the impedance for the travelling plane case [15] were evaluated 
using adaptive integral routines, the integral did not converge when the wave number of the 
travelling transverse plane velocity wave was equal to the wave number in the fluid medium into 
which the panel was radiating. Also, at low frequencies, the single integral evaluation was slower 
than the double integral evaluation. These problems are due to singularities in terms of the 
integrand. Although the singularities do cancel out each other, they do cause problems for the 
adaptive integral routines. Singularities also appear in the single integral formulae for the real part 
of the impedance for the simply supported mode case [13]. This paper rewrites these integrands in 
a form that removes the singularities, so that the adaptive integral routines work correctly and 
effectively. This paper also derives the single integral formulae for the imaginary part of the 
impedance for both the travelling wave case and the simply supported mode case. Most previous 
papers only treat the travelling plane wave case or the simply supported mode case. This paper 
gives a uniform treatment of both cases. 

Even with one less level of integration, the numerical evaluation can be fairly time consuming, 
especially as the products of the wave number of the transverse velocity wave in the panel and the 
wave number of the sound in air with the half side lengths of the panel become large. Thus, this 
paper also gives approximate formulae and compares their output with the numerical calculations 
for the azimuthally averaged one sided impedance of a square panel mounted in an infinite rigid 
baffle. Approximate formulae are also given for the case when the waves in the panel are excited 
by a diffuse sound field which is incident on one side of the panel. 

When a panel is actually excited, there are usually at least two types of transverse vibrational 
fields excited in the panel. One is a freely propagating resonant field and the other is a forced 
non-resonant field or a near field. Equations are given for calculating the impedance of a panel in 
an infinite baffle which is excited by an incident diffuse sound field, by transverse point forces or 
by transverse line forces. 

This paper also examines the difference in radiation impedance between different types of waves. 
At first sight, it is surprising that there are differences in some cases between the radiation 
impedances of travelling plane waves and simply supported modes on a rectangular isotropic 
panel, because the simply supported modes can be expressed as a sum of travelling waves. The 
reason for the differences are that one wave on the panel can alter the impedance experienced by 
another wave. This also applies to the real part of the normalized radiation impedance of different 
modes on a panel, but Xie et al. [16] have shown that these modal interactions cancel out when 
the position of the transverse excitation point is averaged over the surface of the panel. The 
authors suspect that a similar cancellation of the interactions between different travelling waves 
or simply supported modes occurs when azimuthal averaging or incident diffuse field averaging is 
used. This is because the results of such averaged results have proved useful in making acoustical 
predictions. Such cancellation does not always occur when the travelling plane waves are 
summed to form a mode because the relative phase of the travelling plane waves is fixed by the 
boundary conditions of the panel. Hence these differences in impedance survive the azimuthal 
averaging. 



 

2. Definition of radiation impedance 

In this paper, the sinusoidal variation with time is assumed to be proportional to exp(jωt), where 
ω is the angular frequency, t is the time, j is the square root of -1. It should be noted that the 
assumption of exp(-jωt) for the sinusoidal variation with time gives the opposite sign for the 
imaginary part of the impedance. The impedances in this paper are normalized by dividing by the 
characteristic impedance of the fluid medium Zc, which is the product of the ambient density of 
the fluid medium ρ0 and the speed of sound in the fluid medium c. Note that root mean square 
(rms) amplitudes rather than peak amplitudes are used in this paper. 

Consider a plane surface area S whose area is also denoted by S, mounted in an infinite rigid 
plane baffle in the x-y plane z=0, in which a two dimensional transverse velocity wave is 
propagating. The rms transverse velocity of the wave over the surface area of the panel in the 
positive z-axis direction is u(r0) where r0=(x0,y0,z0) is the position on the panel. The sound 
pressure in the fluid medium on the positive z side of the baffle at position r1=(x1,y1,z1) is given 
by the Rayleigh integral (See Eq. (2.4) of [17]) 

    1 0 1 0 0( ) ,c

S

p jkZ u g d r r r r r  (1) 

where gω is the Green’s function for a point source on an infinite rigid baffle which is given by 
    1 0, exp( ) 2g jkr r  r r  (2) 

where 

      2 2 2

1 0 1 0 1 0 1 0r x x y y z z       r r  (3) 

and k is the wave number in the fluid medium into which the wave is radiating on the positive z 
side of the baffle. 

The sound power W radiated by one side of the panel is 

          * *
1 1 1 0 1 1 0 0 1Re Re ,c

S S S

W p u d jkZ u u g d d

   
    

   
  r r r r r r r r r . (4) 

It is desirable to be able to write the sound power W radiated by one side of the panel as 

 2Re cW zZ S u     (5) 

where 

      22 *
0 0 0 0 0

S S

u u d S u u d S  r r r r r  (6) 

is the mean square transverse velocity of the plane surface area S. Hence it is convenient to define 
the normalized radiation impedance z of a wave on the surface S as 

        * 2
1 0 0 1 0 1,

S S

z jk g u u d d S u   r r r r r r . (7) 

If the transverse velocity of the plane wave on the surface S in the positive z-axis direction is 
 0 0 0( ) exp( . )bu u j r k r  (8) 

where kb =(kx,ky,0) is the wave number vector of the wave and u0 is the complex amplitude of the 
wave, then 

 
22

0
u u  (9) 

and 
      2

1 0 0 1exp . exp( ) 2b

S S

z jk j jkr kr d d S          k r r r r . (10) 



 

This agrees with equation (10) of [11] which was derived using the authors’ previous definition. 

If the transverse velocity of the standing wave on the surface S in the positive z-axis direction is 
    0 0 0 0( ) sin sinx yu u k x k yr   (11) 

then 

 
22

0
4u u   (12) 

where it has been assumed that u(r0) is zero on all four edges of the panel. In this case 

            0 0 1 1 0 0 1 12 sin sin sin sin exp( )x y x y

S S

z jk k x k y k x k y jkr kr dx dy dx dy S     . (13) 

The real part of this equation agrees with equation (2.5) of [13] for the radiation efficiency which 
is the real part of the normalized radiation impedance. 

3. Reduction to double integral 

If S is the rectangle 
 ,  ,  0x a y b z   , (14) 

then the quadruple integrals in equations (10) and (14) can be reduced to double integrals using 
the methods of Appendix A of [14], Appendix 12.A of [1], [15] and [13]. Equations (10) and (13) 
become 

 
      

     

2 22

0 0

2 2 2 2

2 cos 2 cos

exp 2

a b

x yz jk a k b k

jk k d d ab

   

      

  

     

 
 (15) 

and 

 
           

     

2 22
1 10 0

2 2 2 2

2 cos s 2 cos s

exp 2

a b

x x y yz jk a k k b k k

jk k d d ab

       

      

         
     

 
, (16) 

where 

    1

1              if 0
s

sin  if 0

x
x

x x x


  

. (17) 

Note that s1(x) is the un-normalized sinc function used in mathematics. Signal processing uses the 
normalized sinc function which is equal to s1(πx). 

Define 

 2 2
b b x yk k k  k   (18) 

 xk k    (19) 

 yk k    (20) 

 2 2
bk k       (21) 

Equation (16) can be written as [13] 

 

     

           

2 22

0 0

2 2 2 2

2 cos sin

2 cos sin exp 2

a b
z jk a k k k

b k k k jk k d d ab

     


            


       
             

 
. (22) 



 

4. The travelling plane wave case 

The double integrals in equations (15) and (22) can be converted to more complicated single 
integrals by converting to polar coordinates. Rhazi and Atalla [15] have given the result for the 
real part of equation (15) and indicated how to apply the method to obtain the imaginary part of 
equation (15). Rhazi and Atalla successfully used “a Gauss numerical integration scheme” written 
in FORTRAN to calculate the real part. However, when the authors of this paper evaluated their 
equations for the real part using the standard adaptive integral routine in MATLAB with its 
default settings, the adaptive integral routine did not converge when kb=k. It was also discovered 
that it was faster to evaluate the real part of double integral in equation (15) using the standard 
adaptive double integral routine in MATLAB with its default settings when ka and kb were small. 
The reason is that Rhazi and Atalla’s equations have terms which have singularities when kb=k. 
Although these singularities do cancel out, they are sufficient to cause problems for MATLAB’s 
adaptive integral routines. The authors have overcome this problem by writing the equations in a 
different form and also derived the modified equations for the imaginary part. 
    2

2 1s sx x  (23) 

    3 2s sx x x  (24) 

      4
1

0                             if 0
s

s cos  if 0

x
x

x x x x

     
 (25) 

    5
4

1 3          if 0
s

s  if 0

x
x

x x x


  

 (26) 

      6 1 2 2 / 2s x s x s x   (27) 

      7
2 1

0                               if 0

s 2 s  if 0

x
s x

x x x x

     
 (28) 

      8 4 7s ss x x x   (29) 

      9 1 5s 2ss x x x   (30) 

    1 1 cos sina k          (31) 

    2 1 cos sina k          (32) 

    3 1 cos sina k          (33) 

    4 1 cos sina k          (34) 

  arctanl b a   (35) 
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b
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  
4
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1

s 2r t
t

T k a R


   (37) 

  
4

1 1
1

si t
t

T k a R

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      
4

2 4
1
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t

T kR a R a

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4

2 6
1

cos s 2i t
t
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
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      
4

3 4
1

sin s 2r t
t
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

     
 
  (41) 
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4
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1
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t
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        
4

2
4 8

1

sin cos s 4r t
t

T kR a R ab 


    
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        
4

2
4 9

1

sin cos s 4i t
t

T kR a R ab 

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  (44) 

For p equals r or i 

 
4

1

2p pt
t

T R T


   
 
 , (45) 

 
/2

0p pz T d


   . (46) 

The value of equation (15) is 
 r iz z jz  . (47) 

5. The simply supported mode case 

Leppington et. al. [13] give the results of converting the real part of equations (16) and (22) to a 
single integral by converting to polar co-ordinates. However their individual terms have 
singularities which cancel out. These singularities would cause difficulties with MATLAB’s 
adaptive integral routines. Leppington et. al. also extend the range of integration from 0 to π/2 
radians to 0 to 2π radians. This is undesirable from a numerical point of view. Thus the authors 
have rewritten the equations of Leppington et. al. without singularities in a format that is suitable 
for evaluation by MATLAB’s adaptive integral routines. They have also derived the equations for 
the imaginary part which was not done by Leppington et. al.. 

The integrands Tr and Ti are first evaluated when both α and β are non-zero. 
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1    if 3 or 4t

t
c

t

 
  

 (67) 

    
4

44 3
1

s 2r t t
t

T c a R k


     
 
  (68) 

    
4

44 1
1

si t t
t

T c a R k


     
 
  (69) 

For p equals r or i 

  
4

4 4
1

4p p t
t

T T ab


   
 
 , (70) 

 
4

1

2p pt
t

T R T


   
 
 . (71) 

If α is zero and β is non-zero, the integrands Tr and Ti are evaluated as follows. First a1 and a2 are 
redefined. 
  1 1 sina k       (72) 

  2 1 sina k       (73) 

  
2

1 3
1

2r t
t

T k s a R


   (74) 



 

  
2

1 1
1

i t
t

T k s a R


   (75) 

    
2

21 4
1

sinr t
t

T Rk s a R


     (76) 

    
2

21 6
1

sin si t
t

T Rk a R


     (77) 

    
2

22 1
1

1 s
t

r t
t

T a R 


      
  (78) 

    
2

22 3
1

1 s 2
t

i t
t

T a R 


       
  (79) 

For p equals r or i 

  
2

2 2
1

2p p t
t

T T b


   
 
 , (80) 

 
2

1
p pt

t

T R T


  . (81) 

If β is zero and α is non-zero, the integrands Tr and Ti are evaluated as follows. First a1 and a2 are 
redefined. 
  1 1 cosa k       (82) 

  2 1 cosa k       (83) 

  
2

1 3
1

2r t
t

T k s a R


   (84) 

  
2

1 1
1

i t
t

T k s a R


   (85) 

    
2

21 4
1

cosr t
t

T Rk s a R


     (86) 

    
2

21 6
1

cos si t
t

T Rk a R


     (87) 

    
2
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1

1 s
t

r t
t

T a R 


      
  (88) 

    
2

22 3
1

1 s 2
t

i t
t

T a R 


       
  (89) 

For p equals r or i 

  
2

2 2
1

2p p t
t

T T a


   
 
 , (90) 
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If α and β are both zero, the integrands Tr and Ti are evaluated as follows. 
  2 1 cosrT kR     (92) 

  2siniT kR  (93) 

Now the real part zr and the imaginary part zi of equations (16) and (22) can be calculated with a 
single numerical integration. 



 

 
/2

0p pz T d


    (94) 

When numerically evaluating the integral in equation (94) with MATLAB’s standard adaptive 
integral routine with its standard settings, it was found that it was necessary to assume that α 
and/or β were zero if their magnitudes were less than 1 x 10-6. The value of equations (16) and 
(22) is 
 r iz z jz  . (95) 

6. The azimuthal average 

The azimuthal angle ϕ to the x-axis can be calculated. 

    arctan arctan y xk k     (96) 

Then 
      cos     , (97) 

      sin     . (98) 

where μ(ϕ) has been shown as a function of the azimuthal angle ϕ because it will sometimes 
depend on the direction of propagation, as is the case for a freely propagating wave on an 
orthotropic panel. The weighted average zav of the impedance given by equations (47) or (94) over 
the azimuthal angle ϕ with weighting function w(ϕ) is 

      
2 2

0 0

/azz w z d w d
 

       . (99) 

If w(ϕ) and μ(ϕ) are symmetrical functions about the x and y axes, the ranges of integration over 
the azimuthal angle ϕ can be reduced to 0 to π/2 radians by symmetry. If w(ϕ) and μ(ϕ) are 
constant functions of the azimuthal angle ϕ and the rectangle S is a square, the ranges of 
integration over the azimuthal angle ϕ can be reduced to 0 to π/4 radians by symmetry. The 
weighting function w(ϕ) can be used to account for the fact that the wave impedance of an 
orthotropic panel varies with the azimuthal angle ϕ of propagation. The quantity zav is what 
Leppington et al.’s [13] and Maidanik’s [18, 19] approximate equations and the authors’ [10-12, 
20] previous approximate equations for the radiation efficiency of a rectangular panel in an 
infinite baffle are trying to approximate. 

7. The diffuse field incident average radiation impedance 

If the transverse velocity wave in the surface S is forced by a plane sound wave with a wave 
number of ki incident from either side of the panel with an incidence angle of θ to the normal of 
the surface S and an azimuthal angle of ϕ to the x-axis, then 
      sinik k    (100) 

is constant as a function of the azimuthal angle ϕ,  
        sin cosik k     (101) 

and 
        sin sinik k    . (102) 

The incident wave number ki on the incident side may be different from the wave number k on the 
radiating side if the incident and radiating sides are different and if the fluid media on each side of 
the panel are different. This will not normally be the case and ki/k will normally be equal to one. 
The travelling wave case should be used to calculate the radiation impedance for a transverse 
wave which is forced by an incident plane sound wave because the transverse waves reflected at 



 

the edges of the panel will have the freely propagating wave number of the panel rather than the 
forced wave number given by equations (100) and (21). Thus the anechoic edge conditions are 
approximate for the forced wave because there are no forced reflected waves. The radiation 
impedance of the freely propagating resonant reflected waves will have to be calculated 
separately using the appropriate boundary conditions. 

The weighted incident diffuse sound field forced radiation impedance is the average of z over all 
solid angles of incidence with weighting function v(θ,ϕ) as shown in the following: 

        
2 /2 2 /2

0 0 0 0

, sin , sinz v z d d v d d
   

              . (103) 

If the weighting function v(θ,ϕ) can be written as 
      ,v p w    , (104) 

then 

        
/2 /2

0 0

sin sinavz p z d p d
 

        . (105) 

8. Simply supported mode 

If the isotropic rectangular panel S is simply supported in the infinite rigid baffle, each of its 
transverse velocity modes has the transverse velocity amplitude on the surface of the panel given 
by equation (11). Each of these modes has m and n positive integer half wavelengths in the 
directions of the x and y axes respectively. Each mode is freely vibrating at its natural frequency 
or being forced to vibrate at a frequency which corresponds to a wave number of k in the fluid 
medium on one side of the panel into which the panel is radiating sound. In this case the variables 
α and β can only take the following discrete values. 
  2m ka   (106) 

  2n kb   (107) 

However for the purposes of calculating the azimuthally averaged impedance, it is convenient to 
regard them as continuous variables. Because the variables α and β are positive, azimuthal 
averaging only needs to be conducted over the range from 0 to π/2. 

The minimum value of μ in this case is 

    2 2min 1 1 2a b k   . (108) 

For a square where a=b=e, the minimum is 

    min 2ke  . (109) 

Thus, it does not really make sense to calculate the impedance for the simply supported standing 
wave case when μ is less than the minimum value given by equation (108) or (109). 

If the transverse velocity of the panel is due to freely propagating bending waves, then 

 b ck k     (110) 

where c  is the angular critical frequency of the panel. The angular critical frequency is the 

angular frequency at which the wave number of the freely propagating bending waves in the panel 
equals the wave number of the sound in the surrounding compressible medium into which the 
panel is radiating sound. If the value of   calculated using equation (110) is less than the 
minimum value of   calculated using equation (108) or (109), then the radiation impedance for 



 

the simply supported mode case should be calculated using the minimum value of   calculated 
using equation (108) or (109) rather than the value of   calculated using equation (110). 

9. Approximate formulae 

Calculate 

  sinbk

k
   , (111) 

where the second equality only applies if bk k .   is the ratio of bk  and k , which are 

respectively the transverse wave number in the rectangular panel and sound wave number in the 
surrounding compressible fluid medium into which the panel is radiating sound.   is the angle of 
incidence of an incoming three dimensional plane wave in the surrounding fluid medium which 
could generate the transverse wave in the rectangular panel. 

Calculate 
  2ke kab a b  , (112) 

where 2a and 2b are the lengths of the sides of the rectangle and 2e is the length of the sides of a 
equivalent square. 

9.1 μ ≤ 1 

If 1  , calculate 

  21 cosg     , (113) 

and 

  2p ke . (114) 

Set 1.29trw  , 0.9tiw  , 1.3srw  , and 1.77siw   and calculate xyg  where x equals t for the 

travelling wave case or s for the simply supported mode case and y equals r or i. 

  min ,1  where  equals  or  and  equals  or xy xyg w p x t s y r i . (115) 

Set 2t   and 8s  . Calculate 

 2
xlr xz k ab  . (116) 

If 1xrg g  , where x equals t or s, calculate 

 1xhrz g . (117) 

Set 0.07tr   , 0.07ti  , 0.4sr   and 0.15si   . If 0g   calculate 

   0 max 0.9616 2 3 ,0.001xhy x hy xyz z p      . (118) 

If 0 xrg g   calculate 0x hrz  using equation (118) and xmhrz  using equation (117) with xrg g  for 

x equals both t and s. Interpolate in the inverse impedance domain as a function of g . 

   0xhr xr xr x hr xmhrz g g g z g z     . (119) 

Set 2tn   and 3sn  . Calculate 

 1 1 1x xx n nn
xr xlr xhrz z z  , (120) 

where xlrz  is calculated using equation (116) and xhrz  is calculated using equations (117), (118), 

or (119). 



 

Calculate 
    2tliz k bH a b aH b a     , (121) 

where 

      2 2( ) ln 1 1 1 3H q q q q q      . (122) 

Calculate 

     2 2
2 2 ln 1 / 2 ln 1 /sliz k a b a b a b a b a b               

  (123) 

If 1xig g  , calculate 

  32thiz keg , (124) 

 
  1 0.8shiz ke , (125) 

 

  3 3
2 max 2 ,0.000001shiz keg     , (126) 

and 

 1

2

if 1.2

if 1.2
shi

shi
shi

z ke
z

z ke


  

. (127) 

Set 4tn   and 2sn  . Calculate 

 1 1 1x xx n nn
xi xli xhiz z z  . (128) 

using equations (118), (124) and (127). 

If 0g  , calculate 

  0 0min ,ti t i tli t hiz z z z  , (129) 

 

 2 2
1 11 1 1si sli shiz z z  , (130) 

and 
  0 1 0max ,si s i si s hiz z z z    (131) 

using equations (118), (121) and (123). 

If 0 xig g  , calculate 0x iz  using equations (129) and (131), and xmiz  using equation (128) with 

xig g . Interpolate in the impedance domain as a function of g . 

   0xi xi x i xmi xiz g g z gz g     . (132) 

If 1  , calculate 

 x xr xiz z jz  , (133) 

where xrz  is given by equation (120) and xiz  is given by equations (128), (129), (131), or (132). 

9.2 μ > 1 

Else if 1  , set 1.7trh  , 1.3tih   1.8srh  and 1.5sih   and calculate xy  where x equals t or s 

and y equals r and i. 



 

  21 2  where  equals  or  and  equals  or xy xyh ke x t s y r i   . (134) 

If xr  , calculate 

  3/222 1trz ke     
, (135) 

      2ln 1 1 1sr trz z ke           . (136) 

If 1 xr    calculate the real part xmrz  using equation (135) or (136) with xr  . Calculate the 

real part 1x rz  as described for the 1   case with 1   which implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1xr xr x r xmr xrz z z          . (137) 

The calculation of the imaginary part for the travelling wave case when 1   depends on the 

value of ke . If 2ke  , calculate the imaginary part 1t iz  as described for the 1   case with 

1  . Calculate 

 21 1tmiz   . (138) 

Calculate 

 4 44
11 1 1ti t i tmiz z z  . (139) 

Else if 2ke   proceed as follows 

If ti  , calculate 

 21 1tiz   . (140) 

If 1 ti    calculate the imaginary part tmiz  using Eq. (140) with ti  . 

Calculate the imaginary part 1t iz  as described for the 1   case with 1   which implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1ti ti t i tmi tiz z z          . (141) 

For the simply supported mode case, the imaginary part when 1   is calculated as follows. 

If si  , calculate 

   21 1.3 / 1siz ke      . (142) 

If 1 si    calculate the imaginary part smiz  using equation (142) with si  . 

Calculate the imaginary part 1s iz  as described for the 1   case with 1   which implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1si si s i smi siz z z          . (143) 

If 1  , calculate 

 x xr xiz z jz  . (144) 

where xrz  is given by equations (135) or equations (137) and xiz  is given by equations (139), 

(140), (141), (142) or(143). 



 

The azimuthally averaged one sided radiation impedance of a finite rectangular panel is given by 
equations (133) or (144). 

9.3 Incident diffuse sound field 

It is also possible to give approximate formulae for the real part of the normalized incident diffuse 
sound field forced radiation impedance in the travelling wave case if the weighting function is 
constant [20]. Using equation (115) define 
 trf g . (145) 

Using equation (116) define 
 1 tlrq z . (146) 

Using equation (118) define 
 01 t hrh z . (147) 

Define 
 1h f   . (148) 

Then the real part of the normalized incident diffuse sound field forced radiation impedance in the 
travelling wave case is 

        2 2 2 2 2 2 2ln 1 1 lntrz q f f q h h q f f q                   
. (149) 

Note that this is also the incident diffuse sound field forced radiation efficiency of the panel. 

10. The effect of different wave types and boundary conditions 

For the travelling plane wave case, the normalized radiation wave impedance of an infinite panel 
is [17] 
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  (150) 

Thus for large values of ke , the real part of the impedance when 0 1   and the imaginary part 
of the impedance when 1   are expected to be close to the values given by equation (150) and 
thus easier to approximate. The travelling plane wave case and the simply supported mode case 
are expected to have similar values of the real or the imaginary parts of their impedance in these 
two cases. Examination of equations (113), (117), (138), (140) and (142) shows that this is indeed 
the case. On the other hand, for large values of ke , the imaginary part of the impedance when 
0 1   and the real part of the impedance when 1   are expected to be close to the zero 
values given by equation (150) and thus harder to approximate. The travelling plane wave case 
and the simply supported mode case are expected to have different values of the imaginary or the 
real parts of their impedance in these two cases. 

Examination of equation (116) shows that for small values of ke  and values of   that are not too 
large, the simply supported mode case has a real part of its impedance that is four times or six 
decibels greater than the real part of the impedance for the travelling wave case. It should be 
noted that equation (116) can easily be derived as the limit for small values of ke  and bk e ke  

of the real parts of equations (15) and (16). Comparison of equation (135) and the term that is 
added to it in equation (136), show that they become equal for large values of  . This means that 
the real part of the impedance for the simply supported mode case tends to twice or 3 decibels 
greater than the real part of the impedance for the travelling wave case for large values of ke  and 



 

 . Comparison of equations (121), (122) and (123) shows that for small values of ke  and values 
of   that are not too large, the simply supported mode case has an imaginary part of its 
impedance that is 2.37 times or 3.75 dB greater than the imaginary part of the impedance for the 
travelling wave case. 

According to [21, 22], the real part of the radiation impedance of a clamped panel is twice as 
great as that of a simply supported panel for 1   and ke  large. More generally if the boundary 
conditions of the panel are zero displacement and a rotational stiffness, then zero rotational 
stiffness corresponds to the simply supported case and infinite rotational stiffness corresponds to 
clamped case. As the rotational stiffness varies from zero to infinity, the real part of the radiation 
impedance varies between the simply supported case and the clamped case and always lies in 
between these two cases. 

Squicciarini et al. [23] have shown that real part of the normalized radiation impedance (radiation 
efficiency) of a point excited panel mounted in an infinite baffle depends on the edge conditions. 
In particular they have shown that when 1   a freely supported panel has lower radiation 
efficiency than a simply supported panel and that a clamped panel has higher radiation efficiency 
than a simply supported panel except at very low values of bk e ke  where the radiation is 

dominated by the fundamental drum mode. 

11. Origin of the approximate formulae 

The approximate formulae are based on the method used by the first author [20] to approximate 
the real part of the radiation impedance for the travelling wave case. The product of the airborne 
wave number and the half side length of the equivalent square (112) is calculated using equation 
(20) of Thomasson [8]. The expression for the side length of the equivalent square is also part of 
equation (7.7) of Leppington et al. [13] and the second term of equation (2.39a) of Maidanek 
[18]. Approximate formulae when 1ke  were derived for the 1   case and for the 1  case 
and later [11] for the 1  case. Formulae for the upper limit   (115) of applicability of the 
formula for the 1  case and for the lower limit   (134) of applicability of the formula for the 

1  case were derived. These formulae for the limits of applicability are based on the first 
author’s research [20] and contain empirically derived constants. Interpolation in the inverse real 
impedance domain (119) and in the imaginary impedance domain (132) as a function of g  (113) 
was used for values of   between the upper limit and 1  . Between 1   and the lower limit, 
interpolation in the impedance domain (137), (141), (143) as a function of   was used. 

The values for the 1ke  case were combined [20] with the values for the 1ke  case by 
inverting the values, raising them to the power of n, summing these powers, taking the nth root 
and inverting the result (120), (128), (130), (139). There were some differences as to the order 
and manner in which this combination method and the interpolation method described above were 
applied. This was determined by comparison with the numerically calculated values and will not 
be discussed further here. 

The combination method has been described above. Where did the equations that were combined 
come from? The equations (118) for the 1   and 1ke  case are equation (B16) of Thomasson 
[8] with empirically determined correction terms. The equations (117) for the real part for the 

1  and 1ke  case are the first line of the infinite panel case given in equation (150). The 
equations (138), (140) and (142) for the imaginary part for the 1  and 1ke  case are the 
third line of the infinite panel case given in equation (150). For the simply supported mode case, 
equation (142) also has an empirically determined correction term. The equations (135)and (136)
for the real part when 1  and 1ke  come from equation (7.7) of Leppington et al. [13]. The 



 

travelling wave case (135) only uses the second from equation (7.7) of Leppington et al. [13]. The 
imaginary part for the travelling wave case (124) when 1   and 1ke  is based on a 
modification of the second term of equation (7.7) of Leppington et al. [13] for the case when 

1  . The equation for the simply supported mode case (127) also includes an empirically 

determined 3  factor. This equation has a different form (125) if 1.2ke  . 

For 1ke  and 1  , the real part for the travelling wave case (116) is derived from the well 
known result for a rigid piston in an infinite baffle [20]. The simply supported version of equation 
of equation (116) is four times greater based on numerical and theoretical calculations. For 

1ke  and 1  , the imaginary part for the travelling wave case (121), (122) comes from 
equations (C10) and (C11) of Thomasson [8]. The simply supported case (123) was analytically 
calculated by the authors. Equations (145) to (149) for real part of the normalized incident diffuse 
sound field forced radiation impedance are from Davy [20]. 

12. Accuracy of the approximate formulae 

In 2009, the first author [20] compared the approximate formulae for the real part of the 
azimuthally averaged normalized impedance (this is also the radiation efficiency) of a square 
panel mounted in an infinite rigid baffle for the travelling wave case when 0 1   with 
numerical calculations made by Sato [24]. The comparisons were made for 15 values of ke  from 
0.5 to 64 and for seven values of  sin   from   equals 0° to 90° in 15° increments. The 

differences are shown in dB in table 1 of [20]. Although the constants in the approximate 
equations for this case have been slightly changed in this paper in order to be more consistent 
with the other approximate equations and as a result of having a wider range of values to compare 
against, the differences given in table 1 of [20] still give a good indication of the typical accuracy 
of the approximate equations in this case. The first author [20] also gave the mean, the standard 
deviation, the maximum and the minimum of the differences between Sato’s [24] numerical 
calculations and the approximate equations given in [20] and the approximate equations given in 
four other publications. The first author [20] compared his own approximate equations and those 
of three other authors with Sato’s [24] numerical calculations for the diffuse field excited case. 

In 2014, because the first author’s approximate equations only predicted the real part of the 
impedance for   less than or equal to one, the authors [10] combined Thomasson’s [8] high and 
low frequency equations, for   less than or equal to one, for both the real and imaginary parts so 
that they covered the whole frequency range. These combined equations were compared with 
Thomasson’s [8] tabulated numerical values for a square mounted in an infinite rigid baffle. The 
values of ke  ranged from 0.25 to 64 in half octave steps and the values of  sin   from   

ranged from 0° to 90° in 15° increments. There were also comparisons with five extra numerical 
values which were read from Thomasson’s [8] graphs. The authors [10] also compared the first 
author’s [20] approximate formulae for the real part of the impedance with Thomasson’s [8] 
numerical calculations and discovered that they were a better approximation than the combined 
version of the real part of Thomasson’s [8] formulae. 

In [11], the authors extended their combined version of Thomasson’s approximate formula to 
cover the case when   was greater than one. These extended approximate formulae were 
compared with numerical calculations made by the authors for a square in an infinite rigid baffle 
for values of ke  ranging from 0.25 to 11.31 in half octave steps and for values of   ranging from 
1 to 10 in one tenth of a decade steps. The highest value of ke  was limited to 11.31 rather than 64 
because of the increase in calculation time with increasing values of ke  when numerically 
evaluating equation (15). 



 

Also in 2014, the authors [12] replaced their combined version of Thomasson’s approximate 
formulae, for the case when   is less than or equal to one, with the first author’s [20] better 
performing approximate equations for the real part and developed new better approximate 
formulae for the imaginary part. Because the   equals one values are used when interpolating to 
calculate some of the impedances when   is greater than one, this change also changed some of 
the values when   is greater than one. Comparisons between the approximate formulae and the 
numerically calculated impedances for a square panel in an infinite rigid baffle were made for the 
same values of variables as in [11]. In addition, because the authors’ own numerically calculated 
values were used instead of Thomasson’s tabulated values, comparisons were also made for the 
same ke  values when   equals 70°, 80° and 85°. 

In this paper, the reduction of one level of integration has enabled the authors to extend the range 
of ke  to be from 0.25 to 1024 in half octave steps while maintaining the same values of   that 
were used in [12]. The one exception was the real part of the impedance when   is greater than 
one. In this case the upper limit of ke  was only increased from 11.31 to 64 because of long 
calculation times even with the reduction of one level of integration. 

All the authors’ previous publications have only given comparisons between the approximate 
equations and the numerical calculations for the travelling wave case. In this paper the authors 
present approximate formulae for the simply supported mode case and also include calculations 
for a rectangle whose side lengths have ratio of 1:4 as well the calculations for a square. The 
introduction of a second case and the non-square rectangle and the significant extension of the 
range of ke  means that the comparison tables of individual decibel differences would have 
quadrupled in number and increased more than a third in size. Thus in this paper, only the means, 
the standard deviations, the root mean square (rms) sums of the mean and standard deviation, the 
maxima and the minima of the differences are presented. Readers who are interested in the 
difference in impedance for individual values of the variables ke  and   should consult the 
authors’ previous papers on this topic to obtain a rough idea of the actual differences. The 
differences obtained with the versions of the formulae obtained in this paper are generally 
smaller. Some of these papers also give graphs of the numerically calculated values of the 
impedance. 

For the simply supported wave case, the evaluation only occurs for values of ke  and   which 
satisfy equation (108). For the simply supported mode case, some of the numerically calculated 
imaginary impedances for   corresponding to values of   less than 45° were negative while the 
results produced by the approximate formulae were always positive. The decibel difference for 
these negative values could not be calculated unless the modulus of ratio was taken first. It was 
considered that taking modulus of the ratio would have been misleading. Thus in this one case all 
values for   less than 45° were excluded from the evaluation. 

The results are shown in table 1 for a square and in table 2 for a rectangle whose side lengths have 
the ratio of 1:4. The most obvious thing is that, as speculated immediately after equation (150), 
the real part of the impedance when 0 1   and the imaginary part of the impedance when 

1   are more accurately predicted than the other cases. The agreement between the approximate 
formulae and the numerical calculations for the real part of the impedance when 1   is good for 
large values of ke . The disagreement shown in table 1 for this case is due to ripple in the 
numerically calculated results as a function of   for small values of ke . The agreement in the 
travelling wave case for the imaginary part when 1   is also very good apart from some ripple 
in the numerically calculated results when   is close to zero and ke  is of the order of two. For 
the imaginary part of the impedance for the simply supported mode case when 1  , it needs to 
be remembered that only differences when   is greater 0.71 are analysed. This is because some 



 

of the numerically calculated values are negative when   is less than 0.71. In this region the 
impedance oscillates between positive and negative values. The agreement for the   equals one 
case is good. This is slightly surprising since the infinite panel value is infinite in this case. Tables 
1 and 2 also show the results for the real part of the impedance for the incident diffuse sound field 
forced travelling wave case. As would be expected, the results are similar to the real parts of the 
azimuthally averaged impedance when 1   for the travelling wave case and for the simply 
supported mode case. The magnitude of the statistics of the differences for the non-square 
rectanglar case in Table 2 are usually slightly greater than, but similar to, the results for the 
square case in Table 1. 

Table 1. The mean, the standard deviation, the root mean square (rms) sum of the mean and 
standard deviation, the maxima and the minima of the differences in decibels between the 
approximate formulae and the numerical calculations for the real and imaginary parts of the 
azimuthally averaged radiation wave impedance of an isotropic square panel mounted in an 
infinite rigid baffle. The travelling wave case is denoted by TW and the simply supported wave 
case is denoted by SS.   is the ratio of the wave number of the transverse vibrational wave in the 
panel to the wave number of sound in air. Also shown are the results for the real part of the 
incident diffuse sound field excited case. 

 

Case Mean (dB) Standard 

Deviation 
(dB) 

Root Mean 
Square (dB) 

Maximum 
(dB) 

Minimum 
(dB) 

Real TW 1    0.00 0.13 0.13 0.36 -0.61 

Real SS 1   0.01 0.14 0.14 0.35 -0.58 

Imag TW 1    -0.02 0.41 0.41 2.11 -1.56 

Imag SS 1   -0.25 0.73 0.77 2.73 -1.38 

Real TW 1    -0.02 0.91 0.91 6.23 -2.44 

Real SS 1   -0.67 1.22 1.39 3.21 -5.25 

Imag TW 1    0.01 0.09 0.09 0.42 -0.35 

Imag SS 1   0.02 0.09 0.09 0.35 -0.49 

Real Diffuse 0.01 0.11 0.11 0.25 -0.26 

 

Figures 1 and 2 show the maxima and the minima of the differences in decibels between the 
approximate formulae and the numerical calculations for the real and imaginary parts of the 
azimuthally averaged radiation wave impedance of an isotropic square panel mounted in an 
infinite rigid baffle as a function of ke. Figure 1 shows the maximum and minima across 1   
while Figure 2 shows the maximum and minima across 1  . Figure 1 also shows the differences 
for the real part of the incident diffuse sound field excited case. Figure 3 shows the maxima and 
the minima of the differences in decibels between the approximate formulae and the numerical 
calculations for the real and imaginary parts of the azimuthally averaged radiation wave 
impedance of an isotropic square panel mounted in an infinite rigid baffle across values of ke as a 
function of  . As in the tables, for the simply supported wave case, the evaluation only occurs 
across values of ke  and   which satisfy equation (108) and for the imaginary part in the simply 
supported case all values of   less than 0.71 (  less than 45°) were excluded from the 



 

evaluation. The 0.1   values in Figure 3 are actually 0   values. This change was made so 
that the 0   values could be included on the logarithmically scaled graph. 

From Figure 2, it can be seen that the differences in the 1   case are very small for large values 
of ke. The differences for the imaginary part in the 1   case are small for all values of ke, while 
the differences for the real part in the 1   case are large for small values of ke, because of the 
oscillating behaviour of the numerically calculated impedance. Figure 1 shows that the roles are 
reversed in the 1   case. The differences of the real part in the 1   case are reasonably small 
for all values of ke, while the differences of the imaginary part in the 1   case are larger except 
for very small values of ke. The differences for the real part of the incident diffuse sound field 
excited case are also small for all values of ke. Figure 3 shows that the biggest differences occur 
for the real part of the impedance for large values of  . Figure 2 shows that this is due to large 
differences for small values of ke. 

Table 2. The mean, the standard deviation, the root mean square (rms) sum of the mean and 
standard deviation, the maxima and the minima of the differences in decibels between the 
approximate formulae and the numerical calculations for the real and imaginary parts of the 
azimuthally averaged radiation wave impedance of a rectangular panel, whose side lengths are a 
ratio of four, mounted in an infinite rigid baffle. The travelling wave case is denoted by TW and 
the simply supported wave case is denoted by SS.   is the ratio of the wave number of the 
transverse vibrational wave in the panel to the wave number of sound in air. Also shown are the 
results for the real part of the incident diffuse sound field excited case. 

 

Case Mean (dB) Standard 

Deviation 
(dB) 

Root Mean 
Square (dB) 

Maximum 
(dB) 

Minimum 
(dB) 

Real TW 1    0.10 0.35 0.36 1.24 -0.43 

Real SS 1   -0.09 0.23 0.24 0.37 -0.96 

Imag TW 1    -0.01 0.49 0.49 1.53 -1.79 

Imag SS 1   -0.26 0.94 0.97 5.40 -2.08 

Real TW 1    0.18 1.06 1.08 5.46 -2.33 

Real SS 1   -0.45 1.06 1.15 2.62 -4.93 

Imag TW 1    0.03 0.16 0.16 0.82 -0.34 

Imag SS 1   0.01 0.14 0.14 0.74 -0.94 

Real Diffuse 0.11 0.35 0.37 1.02 -0.27 

 

 

 

 

 

 

 

 



 

 

Figure 1. The maxima and the minima of the differences in decibels between the approximate 
formulae and the numerical calculations for the real and imaginary parts of the azimuthally 
averaged radiation wave impedance of an isotropic square panel mounted in an infinite rigid 
baffle across values of 1   as a function of ke. The travelling wave case is denoted by TW and 
the simply supported wave case is denoted by SS.   is the ratio of the wave number of the 
transverse vibrational wave in the panel to the wave number of sound in air. Also shown are the 
differences for the real part of the incident diffuse sound field excited case. 
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Figure 2. The maxima and the minima of the differences in decibels between the approximate 
formulae and the numerical calculations for the real and imaginary parts of the azimuthally 
averaged radiation wave impedance of an isotropic square panel mounted in an infinite rigid 
baffle across values of 1   as a function of ke. The travelling wave case is denoted by TW and 
the simply supported wave case is denoted by SS.   is the ratio of the wave number of the 
transverse vibrational wave in the panel to the wave number of sound in air. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‐6

‐4

‐2

0

2

4

6

8

0.1 1 10 100 1000 10000

D
if
fe
re
n
ce
 (
d
B
)

ke

RealTWmax RealTWmin

ImagTWmax ImagTWmin

RealSSmax RealSSmin

ImagSSmax ImagSSmin



 

 

Figure 3. The maxima and the minima of the differences in decibels between the approximate 
formulae and the numerical calculations for the real and imaginary parts of the azimuthally 
averaged radiation wave impedance of an isotropic square panel mounted in an infinite rigid 
baffle across values of 1   as a function of ke. The travelling wave case is denoted by TW and 
the simply supported wave case is denoted by SS.   is the ratio of the wave number of the 
transverse vibrational wave in the panel to the wave number of sound in air. 

13. Calculation of radiation efficiency 

One of the main uses of the formulae given in this paper is to calculate the radiation efficiency 
which is just the real part of the normalized radiation impedance. If a thin isotropic panel, 
mounted in an infinite rigid baffle is excited by an airborne incident diffuse sound field, then the 
transverse vibration of the panel consists of a forced non-resonant field and a freely propagating 
resonant field. The ratio r of the resonant vibrational energy to the non-resonant vibrational 
energy level of a panel which has been excited by a diffuse sound field is [25] 
  4c rr    , (151) 

where η is the total in situ damping loss factor of the panel. r  is the radiation efficiency of the 

resonant transverse vibration field. This is calculated using the equations for the real part of the 
normalized radiation impedance for the simply supported case given in this paper with the value 
of   given by equation (110) and limiting   to be greater than or equal to the minimum value 

given by equation (108) or (109). nr  is the radiation efficiency of the non-resonant vibration 

field. This is calculated using equation (105) with constant weighting functions or the 
approximate equation (149) for the real part of the normalized diffuse field incident radiation 
impedance for the travelling wave case. The radiation efficiency of the airborne diffuse sound 
field excited panel is the weighted average. 
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Above the angular critical frequency, it is not possible to distinguish between the resonant and the 
non-resonant transverse vibrational fields in the panel. 

The variable r is also the ratio of the power radiated by the resonant vibrational fields to the 
power radiated by the vibrational near fields for a panel excited by point forces acting at right 
angles to the panel [5]. The radiation efficiency of a panel excited by point forces acting at right 
angles to the panel is (see equation (28) of [26]) 

 
 1 1  if 

              if 
r c
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r c

r  

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  

 


. (153) 

The ratio of the power radiated by the resonant vibrational fields to the power radiated by the 
vibrational near fields for a panel excited by line forces acting at right angles to the panel [5] is 

  2l c rr    . (154) 

The radiation efficiency of a panel excited by line forces acting at right angles to the panel is 
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r c
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

  
  

 


. (155) 

Thus although the fundamental radiation efficiencies do not depend on the damping loss factor, 
the above equations show that the radiation efficiency of an excited panel does depend on the 
damping loss factor when c  . This has also been shown in [23, 27]. 

14. Conclusions 

This paper extends the previous definition of the radiation impedance used by the authors so that 
it covers standing waves as well as plane travelling waves. It gives single integral versions of the 
equations, for the normalized radiation impedance of a rectangular panel set in an infinite baffle, 
which remove the singularities so that the integrals can be successfully and effectively evaluated 
using adaptive integration. These equations are given for the real and imaginary parts for both the 
travelling plane wave case and for the simply supported mode case. These two cases have usually 
been treated separately in the literature. This paper gives a uniform treatment of both cases. 

Approximate formulae for the azimuthally averaged normalized radiation impedance of a 
rectangular panel set in an infinite baffle are given for all the cases considered in this paper. An 
approximate formula for the real part of the normalized impedance for the incident diffuse sound 
field excited case is also given. Prior to the authors’ research, most attempts to produce 
approximate formulae have not covered the whole range of variables. 

These approximate formulae are compared with numerical calculations and reasonable agreement 
is obtained in most situations. The faster speed of the single integral version of the equations, 
compared to the previous double integral versions used previously by the authors, has enabled the 
comparisons to be made over a bigger range of variables. 

The effect of different wave types and boundary conditions on the radiation impedance is 
discussed. Because at least two different types of transverse vibrational fields are usually 
established in a finite panel when it is excited, formulae are given for calculating the radiation 
impedance of the panel due to the combined effect of these two different types of fields when the 
panel is excited by an incident diffuse sound field or by transverse point or line forces. 
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