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The one sided radiation impedance of a rectangular panel mounted in a plane infinite 

rigid baffle needs to be known in order to calculate its sound absorption, sound 

insulation and sound radiation directivity. This paper gives approximate equations for 

the azimuthally averaged one sided radiation impedance for both travelling plane 

transverse vibrational waves and simply supported transverse vibrational modes. Most 

previous papers have only considered one type of wave on the panel and have not 

covered the whole range of variables which are considered in this paper. The differences 

and similarities of the radiation impedances of the two wave types are discussed. The 

reduction of one level of integration in the numerical adaptive integration calculations 

has allowed the approximate equations to be compared with the numerical calculations 

over a bigger range of variables. There is reasonable agreement between the 

approximate equations and the numerical calculations. When a panel is experimentally 

excited, usually at least two different wave types are produced in the panel. This paper 

gives equations for the impedance of the combination of these two different wave types. 

Excitations by a diffuse sound field incident on one side, by transverse point forces and 

by transverse line forces are considered. 

1. INTRODUCTION 

The acoustical radiation impedance of one side of a finite rectangular panel mounted in 

an infinite rigid baffle is of importance for the prediction of sound insulation
1-5

, sound 

absorption
1,6-8

 and sound directivity
9
. It occurs naturally when variational techniques are 

used to solve these phenomena
1,2,7,8

. The normalized real part of the acoustical radiation 
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impedance of one side of a finite rectangular panel mounted in an infinite rigid baffle is also 

the panel’s one sided acoustic radiation efficiency.  

This paper gives approximate formulae for the radiation impedance of a rectangular 

panel for two types of wave. One wave type is a travelling plane transverse vibrational wave 

where the boundary conditions are assumed to be anechoic. This is the appropriate choice for 

waves for which are forced by incident plane acoustical waves. The other wave type is a 

simply supported transverse vibrational mode of the panel. This type is the appropriate 

choice for the resonant part of the vibrational field. 

This paper also examines the difference in radiation impedance between the wave 

different types of waves. At first sight, it is surprising that there are differences in some cases 

between the radiation impedances of travelling plane waves and simply supported modes on 

a rectangular isotropic panel, because the simply supported modes can be expressed as a sum 

of travelling waves. The reason for the differences are that one wave on the panel can alter the 

impedance experienced by another wave. This also applies to the real part of the normalized 

radiation impedance of different modes on a panel, but Xie et al.
10

 have shown that these 

modal interactions cancel out when the position of the transverse excitation point is averaged 

over the surface of the panel. The authors suspect that a similar cancellation of the 

interactions between different travelling waves or simply supported modes occurs when 

azimuthal averaging or incident diffuse field averaging is used. This is because the results of 

such averaged results have proved useful in making acoustical predictions. Such cancellation 

does not always occur when the travelling plane waves are summed to form a mode because 

the relative phase of the travelling plane waves is fixed by the boundary conditions of the 

panel. Hence these differences in impedance survive the azimuthal averaging. 

When a panel is actually excited, there are usually at least two types of transverse 

vibrational fields excited in the panel. One is a freely propagating resonant field and the other 

is a forced non-resonant field or a near field. Equations are given for calculating the 

normalized radiation impedance of a panel in an infinite baffle which is excited by an 

incident diffuse sound field, by transverse point forces or by transverse line forces.  

2. APPROXIMATE FORMULAE FOR RADIATION IMPEDANCE 

In this paper, the sinusoidal variation with time is assumed to be proportional to exp( jωt), 

where ω is the angular frequency, t is the time, j is the square root of -1. It should be noted that 

the assumption of exp(-jωt) for the sinusoidal variation with time gives the opposite sign for 

the imaginary part of the impedance. The impedances in this paper are normalized by 

dividing by the characteristic impedance of the fluid medium Zc, which is the product of the 

ambient density ρ0 and the speed of sound c in the fluid medium. 

The subscript t denotes the travelling wave case and the subscript s denotes the simply 

supported mode case. The subscripts r and i denote the real and imaginary parts of the 

impedance. 

Calculate 

  sinbk

k
   , (1) 

where the second equality only applies if bk k .   is the ratio of bk  and k , which are 

respectively the transverse wave number in the rectangular panel and the sound wave number 

in the surrounding compressible fluid medium into which the panel is radiating sound.   is 

the angle of incidence of an incoming three dimensional plane wave in the surrounding fluid 

medium which could generate the transverse wave in the rectangular panel.  



Calculate 

  2ke kab a b  , (2) 

where 2a and 2b are the lengths of the sides of the rectangle and 2e is the length of the sides 

of a equivalent square. 

If 1  , calculate 

  21 cosg     , (3) 

and 

  2p ke . (4) 

Set 1.29trw  , 0.9tiw  , 1.3srw  , and 1.77siw   and calculate 
xyg  where x equals t 

for the travelling wave case or s for the simply supported mode case and y equals r or i. 

  min ,1  where  equals  or  and  equals  or xy xyg w p x t s y r i . (5) 

Set 2t   and 8s  . Calculate 

 2

xlr xz k ab  . (6) 

If 1xrg g  , where x equals t or s, calculate 

 1xhrz g . (7) 

Set 0.07tr   , 0.07ti  , 0.4sr   and 0.15si   . If 0g   calculate 

   0 max 0.9616 2 3 ,0.001xhy x hy xyz z p      . (8) 

If 0 xrg g   calculate 0x hrz  using Eqn. (8) and xmhrz  using Eqn. (7) with xrg g  for 

x equals both t and s. Interpolate in the inverse impedance domain as a function of g . 

   0xhr xr xr x hr xmhrz g g g z g z     . (9) 

Set 2tn   and 3sn  . Calculate 

 1 1 1x xx n nn

xr xlr xhrz z z  , (10) 

where xlrz  is calculated using Eqn. (6) and xhrz  is calculated using Eqns. (7), (8), or (9). 

Calculate 

    2tliz k bH a b aH b a     , (11) 

where 

      2 2( ) ln 1 1 1 3H q q q q q      . (12) 

Calculate 

     2 2
2 2 ln 1 / 2 ln 1 /sliz k a b a b a b a b a b         

      
.  (13) 

If 1xig g  , calculate 

  32thiz keg , (14) 

 

  1 0.8shiz ke , (15) 

 

  3 3

2 max 2 ,0.000001shiz keg  
 

, (16) 



and 

 
1

2

 if 1.2

 if 1.2

shi

shi

shi

z ke
z

z ke


 


. (17) 

Set 4tn   and 2sn  . Calculate 

 1 1 1x xx n nn

xi xli xhiz z z  . (18) 

using Eqns. (8), (14) and (17). 

If 0g  , calculate 

  0 0min ,ti t i tli t hiz z z z  , (19) 

 

 
2 2

1 11 1 1si sli shiz z z  , (20) 

and 

  0 1 0max ,si s i si s hiz z z z  ,  (21) 

using Eqns. (8), (11) and (13). 

If 0 xig g  , calculate 0x iz  using Eqns. (19) and (21), and xmiz  using Eqn. (18) with 

xig g . Interpolate in the impedance domain as a function of g . 

   0xi xi x i xmi xiz g g z gz g     . (22) 

If 1  , calculate 

 x xr xiz z jz  , (23) 

where xrz  is given by Eqn. (10) and xiz  is given by Eqns. (18), (19), (21), or (22). 

Else if 1  , set 1.7trh  , 1.3tih   1.8srh  and 1.5sih   and calculate 
xy  where x 

equals t or s and y equals r and i. 

  21 2  where  equals  or  and  equals  or xy xyh ke x t s y r i   . (24) 

If xr  , calculate 

  
3/2

22 1trz ke   
  

, (25) 

      2ln 1 1 1sr trz z ke           . (26) 

If 1 xr    calculate the real part xmrz  using Eqn. (25) or (26) with xr  . 

Calculate the real part 1x rz  as described for the 1   case with 1   which implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1xr xr x r xmr xrz z z          . (27) 

The calculation of the imaginary part for the travelling wave case when 1   depends 

on the value of ke . If 2ke  , calculate the imaginary part 1t iz  as described for the 1   

case with 1  . Calculate 

 21 1tmiz   . (28) 

Calculate 

 
4 44
11 1 1ti t i tmiz z z  . (29) 



Else if 2ke   proceed as follows 

If 
ti  , calculate 

 21 1tiz   . (30) 

If 1 ti    calculate the imaginary part 
tmiz  using Eq. (30) with 

ti  . 

Calculate the imaginary part 
1t iz  as described for the 1   case with 1   which 

implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1ti ti t i tmi tiz z z          . (31) 

For the simply supported mode case, the imaginary part when 1   is calculated as 

follows. 

If si  , calculate 

   21 1.3 / 1siz ke      . (32) 

If 1 si    calculate the imaginary part smiz  using Eqn. (32) with si  . 

Calculate the imaginary part 1s iz  as described for the 1   case with 1   which 

implies 0g  . 

Interpolate in the impedance domain as a function of  . 

      1 1 1si si s i smi siz z z          . (33) 

If 1  , calculate 

 x xr xiz z jz  . (34) 

where xrz  is given by Eqns. (25) or Eqns. (27) and xiz  is given by Eqns. (29), (30), (31), 

(32) or(33). 

The azimuthally averaged one sided radiation impedance of a finite rectangular panel is 

given by Eqns. (23) or (34). 

It is also possible to give approximate formulae for the real part of the normalized 

incident diffuse sound field forced radiation impedance in the travelling wave case
11

. Using 

Eqn. (5) define 

 trf g . (35) 

Using Eqn. (6) define 

 1 tlrq z . (36) 

Using Eqn. (8) define 

 
01 t hrh z . (37) 

Define 

 1h f   . (38) 

Then the real part of the normalized incident diffuse sound field forced radiation 

impedance in the travelling wave case is 

        2 2 2 2 2 2 2ln 1 1 lntrz q f f q h h q f f q             
      

. (39) 

Note that this is also the incident diffuse sound field forced radiation efficiency of the 

panel. 



3. SIMPLY SUPPORTED MODE 

If the isotropic rectangular panel is simply supported in the infinite rigid baffle with its 

sides parallel to the x and y axes, each of its simply supported transverse velocity modes has 

m and n positive integer half wavelengths in the directions of the x and y axes respectively. 

Each mode is freely vibrating at its natural frequency or being forced to vibrate at a frequency 

which corresponds to a wave number of k in the fluid medium on one side of the panel into 

which the panel is radiating sound. In this case the variables α and β can only take the 

following discrete values. 

  2m ka  . (40) 

  2n kb  . (41) 

However for the purposes of calculating the azimuthally averaged impedance, it is 

convenient to regard them as continuous variables. Because the variables α and β are positive, 

azimuthal averaging only needs to be conducted over the range from 0 to π/2. 

The minimum value of μ in this case is 

    2 2min 1 1 2a b k   . (42) 

For a square, where a=b, the minimum is 

    min 2ka  . (43) 

Thus, it does not really make sense to calculate the impedance for the simply supported 

standing wave case when μ is less than the minimum value given by Eqn. (42) or (43). 

If the transverse velocity of the panel is due to freely propagating bending waves, then  

 b ck k    , (44) 

where c  is the angular critical frequency of the panel. The angular critical frequency is the 

angular frequency at which the wave number of the freely propagating bending waves in the 

panel equals the wave number of the sound in the surrounding compressible medium into 

which the panel is radiating sound. If the value of   calculated using Eqn. (44) is less than 

the minimum value of   calculated using Eqn. (42) or (43), then the radiation impedance 

for the simply supported mode case should be calculated using the minimum value of   

calculated using Eqn. (42) or (43) rather than the value of   calculated using Eqn. (44). 

4. THE EFFECT OF DIFFERENT WAVE TYPES AND BOUNDARY CONDITIONS 

For the travelling plane wave case, the normalized radiation impedance of an infinite 

panel is
12

 

 

2

2

1 1      if 0 1

                   if 1     

1      if 1      

z

j

 



 

   


  


 

.  (45) 

Thus for large values of ke , the real part of the impedance when 0 1   and the 



imaginary part of the impedance when 1   are expected to be close to the values given by 

Eqn. (45) and thus easier to approximate. The travelling plane wave case and the simply 

supported mode case are expected to have similar values of the real or the imaginary parts of 

their impedance in these two cases. Examination of Eqns. (3), (7), (28), (30) and (32) shows 

that this is indeed the case. On the other hand, for large values of ke , the imaginary part of 

the impedance when 0 1   and the real part of the impedance when 1   are expected 

to be close to the zero values given by Eqn. (45) and thus harder to approximate. The 

travelling plane wave case and the simply supported mode case are expected to have different 

values of the imaginary or the real parts of their impedance in these two cases.  

Examination of Eqn. (6) shows that for small values of ke  and values of   that are not 

too large, the simply supported mode case has a real part of its impedance that is four times or 

six decibels greater than the real part of the impedance for the travelling wave case. 

Comparison of Eqn. (25) and the term that is added to it in Eqn. (26), show that they become 

equal for large values of  . This means that the real part of the impedance for the simply 

supported mode case tends to twice or 3 decibels greater than the real part of the impedance 

for the travelling wave case for large values of ke  and  . Comparison of Eqns. (11), (12) 

and (13) shows that for small values of ke  and values of   that are not too large, the simply 

supported mode case has an imaginary part of its impedance that is 2.37 times or 3.75 dB 

greater than the imaginary part of the impedance for the travelling wave case.  

The real part of the radiation impedance of a clamped panel is twice as great as that of a 

simply supported panel for 1   and ke  large
13,14

. More generally if the boundary 

conditions of the panel are zero displacement and a rotational stiffness, then zero rotational 

stiffness corresponds to the simply supported case and infinite rotational stiffness 

corresponds to clamped case. As the rotational stiffness varies from zero to infinity, the real 

part of the radiation impedance varies between the simply supported case and the clamped 

case and always lies in between these two cases. 

Squicciarini et al.
15

 have shown that real part of the normalized radiation impedance 

(radiation efficiency) of a point excited panel mounted in an infinite baffle depends on the 

edge conditions. In particular they have shown that when 1   a freely supported panel has 

lower radiation efficiency than a simply supported panel and that a clamped panel has higher 

radiation efficiency than a simply supported panel except at very low values of  bk e ke  

where the radiation is dominated by the fundamental drum mode. 

5. ACCURACY OF THE APPROXIMATE FORMULAE 

In 2009, the first author
11

 compared the approximate formulae for the real part of the 

azimuthally averaged normalized impedance (this is also the radiation efficiency) of a square 

panel mounted in an infinite rigid baffle for the travelling wave case when 0 1   with 

numerical calculations made by Sato
16

. The comparisons were made for 15 values of ke  

from 0.5 to 64 and for seven values of  sin   from   equals 0° to 90° in 15° increments. 

The differences are shown in dB in table 1 of Davy
11

. Although the constants in the 

approximate equations for this case have been slightly changed in this paper in order to be 

more consistent with the other approximate equations and as a result of having a wider range 

of values to compare against, the differences given in table 1 of Davy
11

 still give a good 

indication of the typical accuracy of the approximate equations in this case. The first author
11

 

also gave the mean, the standard deviation, the maximum and the minimum of the differences 



between Sato’s
16

 numerical calculations and the approximate equations given in Davy
11

 and 

the approximate equations given in four other publications. The first author
11

 compared his 

own approximate equations and those of three other authors with Sato’s
16

 numerical 

calculations for the diffuse sound field excited case. 

In 2014, because the first author’s approximate equations only predicted the real part of 

the impedance for   less than or equal to one, the authors
17

 combined Thomasson’s
8
 high 

and low frequency equations, for   less than or equal to one, for both the real and imaginary 

parts so that they covered the whole frequency range. These combined equations were 

compared with Thomasson’s
8
 tabulated numerical values for a square mounted in an infinite 

rigid baffle. The values of ke  ranged from 0.25 to 64 in half octave steps and the values of 

 sin   ranged from   equals 0° to 90° in 15° increments. There were also comparisons 

with five extra numerical values which were read from Thomasson’s
8
 graphs. The authors

17
 

also compared the first author’s
11

 approximate formulae for the real part of the impedance 

with Thomasson’s
8
 numerical calculations and discovered that they were a better 

approximation than the combined version of the real part of Thomasson’s
8
 formulae. 

The authors
18

 extended their combined version of Thomasson’s approximate formula to 

cover the case when   was greater than one. These extended approximate formulae were 

compared with numerical calculations made by the authors for a square in an infinite rigid 

baffle for values of ke  ranging from 0.25 to 11.31 in half octave steps and for values of   

ranging from 1 to 10 in one tenth of a decade steps. The highest value of  ke  was limited to 

11.31 rather than 64 because of the increase in calculation time with increasing values of ke  

when numerically evaluating the double integral version of the exact equation. 

Also in 2014, the authors
19

 replaced their combined version of Thomasson’s approximate 

formulae, for the case when   is less than or equal to one, with the first author’s
11

 better 

performing approximate equations for the real part and developed new better approximate 

formulae for the imaginary part. Because the   equals one values are used when 

interpolating to calculate some of the impedances when   is greater than one, this change 

also changed some of the values when   is greater than one. Comparisons between the 

approximate formulae and the numerically calculated impedances for a square panel in an 

infinite rigid baffle were made for the same values of variables as in Davy et al.
18

. In addition, 

because the authors’ own numerically calculated values were used instead of Thomasson’s 

tabulated values, comparisons were also made for the same ke  values when   equals 70°, 

80° and 85°. 

In this paper, the reduction of one level of integration
20

 has enabled the authors to extend 

the range of ke  to be from 0.25 to 1024 in half octave steps while maintaining the same 

values of   that were used in Davy et al.
19

. The one exception was the real part of the 

impedance when   is greater than one. In this case the upper limit of ke  was only 

increased from 11.31 to 64 because of long calculation times even with the reduction of one 

level of integration. 

All the authors’ previous publications have been only for the travelling wave case. In this 

paper the authors present approximate formulae for the simply supported mode case. The 

introduction of a second case and the significant extension of the range of ke  means that the 

comparison tables of individual decibel differences would have doubled in number and 

increased more than a third in size. Thus in this paper only the means, the standard deviations, 

the root mean square (rms) sums of the mean and standard deviation, the maxima and the 



minima of the differences are presented. Readers who are interested in the difference in 

impedance for individual values of the variables ke  and   should consult the authors’ 

previous papers on this topic to obtain a rough idea of the actual differences. The differences 

obtained with the versions of the formulae obtained in this paper are generally smaller. Some 

of these papers also give graphs of the numerically calculated values of the impedance.  

For the simply supported wave case, the evaluation only occurs for values of ke  and   

which satisfy Eqn. (43) where a equals e. For the simply supported mode case, some of the 

numerically calculated imaginary impedances for   corresponding to values of   less than 

45° were negative while the results produced by the approximate formulae were always 

positive. The decibel difference for these negative values could not be calculated unless the 

modulus of ratio was taken first. It was considered that taking modulus of the ratio would 

have been misleading. Thus in this one case all values for   less than 45° were excluded 

from the evaluation. 

The results are shown in table 1. The most obvious thing is that, as speculated 

immediately after Eqn. (45), the real part of the impedance when 0 1   and the 

imaginary part of the impedance when 1   are more accurately predicted than the other 

cases. The agreement between the approximate formulae and the numerical calculations for 

the real part of the impedance when 1   is good for large values of ke . The disagreement 

shown in table 1 for this case is due to ripple in the numerically calculated results as a 

function of   for small values of ke . The agreement in the travelling wave case for the 

imaginary part when 1   is also very good apart from some ripple in the numerically 

calculated results when   is close to zero and ke  is of the order of two. For the imaginary 

part of the impedance for the simply supported mode case when 1  , it needs to be 

remembered that only differences when   is greater 0.71 are analyzed. This is because 

some of the numerically calculated values are negative when   is less than 0.71. In this 

region the impedance oscillates between positive and negative values. The agreement for the 

  equals one case is good. This is slightly surprising since the infinite panel value is infinite 

in this case. Table 1 also shows the results for the real part of the impedance for the incident 

diffuse sound field forced travelling wave case. As would be expected, the results are slightly 

better than for the real parts of the azimuthally averaged impedance when 1   for the 

travelling wave case and for the simply supported mode case. 

6. CALCULATION OF RADIATION EFFICIENCY 

One of the main uses of the formulae given in this paper is to calculate the radiation 

efficiency which is just the real part of the normalized radiation impedance. If a thin isotropic 

panel, mounted in an infinite rigid baffle is excited by an airborne incident diffuse sound f ield, 

then the transverse vibration of the panel consists of a forced non-resonant field and a freely 

propagating resonant field. The ratio r of the resonant vibrational energy to the non-resonant 

vibrational energy level of a panel which has been excited by a diffuse sound field is
21

 

  4c rr    , (46) 

where η is the total in situ damping loss factor of the panel. r  is the radiation efficiency of 

the resonant transverse vibrational field. This is calculated using the equations for the real 

part of the normalized radiation impedance for the simply supported case given in this paper 

with the value of   given by Eqn. (44) and limiting   to be greater than or equal to the 



minimum value given by Eqn. (42) or (43). 
nr  is the radiation efficiency of the 

non-resonant vibration field. This is calculated using the approximate Eqn. (39) for the real 

part of the normalized diffuse field incident radiation impedance for the travelling wave case. 

The radiation efficiency of the airborne diffuse sound field excited panel is the weighted 

average. 

 
   1  if 

                          if 

r nr c

a

r c

r r   


  

   
 


. (47) 

Above the angular critical frequency, it is not possible to distinguish between the 

resonant and the non-resonant transverse vibrational fields in the panel.  

The variable r is also the ratio of the power radiated by the resonant vibrational fields to 

the power radiated by the vibrational near fields for a panel excited by point forces acting at 

right angles to the panel
5
. The radiation efficiency of a panel excited by point forces acting at 

right angles to the panel is (see Eqn. (28) of Davy et al.
22

) 

 
 1 1  if 

              if 

r c

p

r c

r  


  

  
 


. (48) 

The ratio of the power radiated by the resonant vibrational fields to the power radiated by 

the vibrational near fields for a panel excited by line forces acting at right angles to the panel
5
 

is 

  2l c rr    . (49) 

The radiation efficiency of a panel excited by line forces acting at right angles to the 

panel is 

 
 1 1  if 

              if 

r l c

l

r c

r  


  

  
 


. (50) 

Thus although the fundamental radiation efficiencies do not depend on the damping loss 

factor, the above equations show that the radiation efficiency of an excited panel does depend 

on the damping loss factor when c  . This has also been shown by other authors
15,23

. 

7. CONCLUSIONS 

This paper gives approximate equations for the azimuthally averaged normalized 

radiation impedance of a rectangular panel set in an infinite baffle. These equations are given 

for the real and imaginary parts for both the travelling plane wave case and for the simply 

supported mode case. These two cases have usually been treated separately in the literature  

and often only the real part has been considered. Prior to the authors’ research, most attempts 

to produce approximate formulae have not covered the whole range of variables. This paper 

gives a uniform treatment of both cases and covers the whole range of variables. An 

approximate formula for the real part of the normalized impedance for the incident diffuse 

sound field excited case is also given. 

These approximate formulae are compared with numerical calculations and reasonable 

agreement is obtained in most situations. The faster speed of the single integral version of the 

exact equations, compared to the previous double integral versions used previously by the 

authors, has enabled the comparisons to be made over a bigger range of variables.  

The effect of different wave types and boundary conditions on the radiation impedance is 

discussed. Because at least two different types of transverse vibrational fields are usually 

established in a finite panel when it is excited, formulae are given for calculating the 



radiation impedance of the panel due to the combined effect of these two different types of 

fields when the panel is excited by an incident diffuse sound field or by transverse point or 

line forces. 
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Table 1. The mean, the standard deviation, the root mean square (rms) sum of the mean and 

standard deviation, the maxima and the minima of the differences in decibels between the 

approximate formulae and the numerical calculations for the real and imaginary parts of the 

azimuthally averaged radiation wave impedance of an isotropic square panel mounted in an 

infinite rigid baffle. The travelling wave case is denoted by TW and the simply supported 

wave case is denoted by SS.   is the ratio of the wave number of the transverse vibrational 

wave in the panel to the wave number of sound in the medium into which the panel is 

radiating. Also shown are the results for the real part of the incident diffuse sound field 

excited case. 

 

Case Mean (dB) Standard 

Deviation 

(dB) 

Root Mean 

Square (dB) 

Maximum 

(dB) 

Minimum 

(dB) 

Real TW 1   0.00 0.13 0.13 0.36 -0.61 

Real SS 1   0.01 0.14 0.14 0.35 -0.58 

Imag TW 1   -0.02 0.41 0.41 2.11 -1.56 

Imag SS 1   -0.25 0.73 0.77 2.73 -1.38 

Real TW 1   -0.02 0.91 0.91 6.23 -2.44 

Real SS 1   -0.67 1.22 1.39 3.21 -5.25 

Imag TW 1   0.01 0.09 0.09 0.42 -0.35 

Imag SS 1   0.02 0.09 0.09 0.35 -0.49 

Real Diffuse 0.00 0.11 0.11 0.25 -0.26 
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