875 research outputs found

    Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion.

    Get PDF
    The actin cortex both facilitates and hinders the exocytosis of secretory granules. How cells consolidate these two opposing roles was not well understood. Here we show that antigen activation of mast cells induces oscillations in Ca(2+) and PtdIns(4,5)P(2) lipid levels that in turn drive cyclic recruitment of N-WASP and cortical actin level oscillations. Experimental and computational analysis argues that vesicle fusion correlates with the observed actin and Ca(2+) level oscillations. A vesicle secretion cycle starts with the capture of vesicles by actin when cortical F-actin levels are high, followed by vesicle passage through the cortex when F-actin levels are low, and vesicle fusion with the plasma membrane when Ca(2+) levels subsequently increase. Thus, cells employ oscillating levels of Ca(2+), PtdIns(4,5)P(2) and cortical F-actin to increase secretion efficiency, explaining how the actin cortex can function as a carrier as well as barrier for vesicle secretion

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl

    Polarization Selection Rules and Superconducting Gap Anisotropy in Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8

    Full text link
    We discuss polarization selection rules for angle-resolved photoemission spectroscopy in Bi2212. Using these we show that the ``hump'' in the superconducting gap observed in the XX quadrant in our earlier work is not on the main CuO2CuO_2 band, but rather on an umklapp band arising from the structural superlattice. The intrinsic gap is most likely quite small over a range of ±10∘\pm 10^\circ about the diagonal directions.Comment: 3 pages, revtex, 3 uuencoded postscript figure

    A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of. Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of 16 lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau(*) equivalent to kappa(M) over dot/4 pi R(*)upsilon(infinity), and place confidence limits on this parameter. These 16 lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau(*) with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau(*), reflected in the rather modest asymmetry in the line profiles, can moreover all be fitted simultaneously by simply assuming a moderate mass-loss rate of 3.5 +/- 0.3 x 10(-6) M(circle dot) yr(-1), without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of 2. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and Galactic evolution

    Critical currents in Josephson junctions, with unconventional pairing symmetry: dx2−y2+isd_{x^2-y^2}+is versus dx2−y2+idxyd_{x^2-y^2}+id_{xy}

    Full text link
    Phenomenological Ginzburg-Landau theory is used to calculate the possible spontaneous vortex states that may exist at corner junctions of dx2−y2+ixd_{x^2-y^2}+ix-wave, (where x=sx=s or x=dxyx=d_{xy}) and s-wave superconductors. We study the magnetic flux and the critical current modulation with the junction orientation angle θ\theta, the magnitude of the order parameter, and the magnetic field HH. It is seen that the critical current IcI_c versus the magnetic flux Φ\Phi relation is symmetric / asymmetric for x=dxy/sx=d_{xy}/s when the orientation is exactly such that the lobes of the dominant dx2−y2d_{x^2-y^2}-wave order parameter points towards the two junctions, which are at right angles for the corner junction. The conclusion is that a measurement of the Ic(Φ)I_c(\Phi) relation may distinguish which symmetry (dx2−y2+isd_{x^2-y^2}+is or dx2−y2+idxyd_{x^2-y^2}+id_{xy}) the order parameter has.Comment: 11 pages with 11 figures, Changed conten

    Student Design Challenges in Capillary Flow

    Get PDF
    For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers

    Ground state properties and dynamics of the bilayer t-J model

    Full text link
    We present an exact diagonalization study of bilayer clusters of t-J model. Our results indicate a crossover between two markedly different regimes which occurs when the ratio J_perp/J between inter-layer and intra-layer exchange constants increases: for small J_perp/J the data suggest the development of 3D antiferromagnetic correlations without appreciable degradation of the intra-layer spin order and the d_(x2-y2) hole pairs within the planes persist. For larger values of J_perp/J local singlets along the inter-layer bonds dominate, leading to an almost complete suppression of the intra-layer spin correlation and the breaking of the intra-layer pairs. The ground state with two holes in this regime has s-like symmetry. The data suggest that the crossover may occur for values of J_perp/J as small as 0.2. We present data for static spin correlations, spin gap, and electron momentum distribution and spectral function of the `inter-layer RVB state' realized for large J_perp/J. The latter deviates from the single layer ground state, making it an implausible candidate for modelling high-temperature superconductors.Comment: Revtex-file, 6 PRB pages, figures appended as uu-encoded postscript. Hardcopies of figures (or the entire manuscript) can be obtained by e-mailing to: [email protected]

    Phenomenological BCS theory of the high-TcT_c cuprates

    Full text link
    A BCS model characterized by a phenomenological pair potential with on-site (V0V_0), nearest (V1V_1), and next nearest (V2V_2) neighbour coupling constants, and an empirical quasiparticle dispersion taken from angle-resolved photoemission spectra is considered. The model can consistently explain the experimental data concerning the pair state of the hole doped cuprates. Three ingredients are required to make the interpretation possible: the existence of flat bands, a very small effective on-site repulsion, and a slightly dominating effective nnn attraction V2V_2 of the order of 60-80meV with a ratio V2/V1≈1.5V_2/V_1 \approx 1.5.Comment: 13 pages, uuencoded Postscrip
    • …
    corecore