312 research outputs found
Authorship in Ecology: Attribution, Accountability, and Responsibility
Quality and quantity of publications are among the most important measures determining the success of ecologists. The past 50 years have seen a steady rise in the number of researchers and collaborative manuscripts, and a corresponding increase in multi-authored articles. Despite these increases, there remains a shortage of useful and definitive guidelines to aid ecologists in addressing authorship issues, leading to a lack of consistency in what the term “author” really means. Deciding where to draw the line between those who have earned authorship and those who are more appropriately credited in the acknowledgments may be one of the more challenging aspects of authorship. Here, we borrow ideas from other scientific disciplines and propose a simple solution to help ecologists who are making such decisions. We recommend improving communication between co-authors throughout the research process, and propose that authors publish their contributions to a manuscript in a separate byline
Vertical zonation of testate amoebae in the Elatia Mires, northern Greece : palaeoecological evidence for a wetland response to recent climate change or autogenic processes?
The Elatia Mires of northern Greece are unique ecosystems of high conservation value. The mires are climatically marginal and may be sensitive to changing hydroclimate, while northern Greece has experienced a significant increase in aridity since the late twentieth century. To investigate the impact of recent climatic change on the hydrology of the mires, the palaeoecological record was investigated from three near-surface monoliths extracted from two sites. Testate amoebae were analysed as sensitive indicators of hydrology. Results were interpreted using transfer function models to provide quantitative reconstructions of changing water table depth and pH. AMS radiocarbon dates and 210Pb suggest the peats were deposited within the last c. 50 years, but do not allow a secure chronology to be established. Results from all three profiles show a distinct shift towards a more xerophilic community particularly noted by increases in Euglypha species. Transfer function results infer a distinct lowering of water tables in this period. A hydrological response to recent climate change is a tenable hypothesis to explain this change; however other possible explanations include selective test decay, vertical zonation of living amoebae, ombrotrophication and local hydrological change. It is suggested that a peatland response to climatic change is the most probable hypothesis, showing the sensitivity of marginal peatlands to recent climatic change
Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests
Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient
Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. © 2013 Moustakas et al
Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.Peer reviewe
Climatic predictors of species distributions neglect biophysiologically meaningful variables
This is the final version. Available on open access from Wiley via the DOI in this record.Aim: Species distribution models (SDMs) have played a pivotal role in predicting how species might respond to climate change. To generate reliable and realistic predictions from these models
requires the use of climate variables that adequately capture physiological responses of species to
climate and therefore provide a proximal link between climate and their distributions. Here, we
examine whether the climate variables used in plant SDMs are different from those known to
influence directly plant physiology.
Location: Global.
Methods: We carry out an extensive, systematic review of the climate variables used to model the
distributions of plant species and provide comparison to the climate variables identified as
important in the plant physiology literature. We calculate the top ten SDM and physiology
variables at 2.5 degree spatial resolution for the globe and use principal component analyses and
multiple regression to assess similarity between the climatic variation described by both
variable sets.
Results: We find that the most commonly used SDM variables do not reflect the most important
physiological variables and differ in two main ways: (i) SDM variables rely on seasonal or annual
rainfall as simple proxies of water available to plants and neglect more direct measures such as
soil water content; and (ii) SDM variables are typically averaged across seasons or years and
overlook the importance of climatic events within the critical growth period of plants. We
identify notable differences in their spatial gradients globally and show where distal variables
may be less reliable proxies for the variables to which species are known to respond.
Main conclusions: There is a growing need for the development of accessible, fine-resolution
global climate surfaces of physiological variables. This would provide a means to improve the
reliability of future range predictions from SDMs and support efforts to conserve biodiversity in a
changing climate
- …