138 research outputs found

    Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy

    Get PDF
    BACKGROUND: Autoimmune retinal degeneration may occur in patients who present with sudden or, less commonly, subacute loss of vision of retinal origin, associated with an abnormal ERG, through the action of autoantibodies against retinal proteins. Often the patients are initially diagnosed with or suspected of having a paraneoplastic retinopathy (PR), such as cancer-associated retinopathy (CAR). However, there is limited information on the occurrence, the specificity of autoantibodies in these patients, and their association with clinical symptoms. METHODS: Sera were obtained from 193 retinopathy patients who presented with clinical symptoms resembling PR or autoimmune retinopathy (AR), including sudden painless loss of vision, typically associated with visual field defects and photopsias, and abnormal rod and/or cone responses on the electroretinogram (ERG). Sera were tested for the presence of anti-retinal autoantibodies by Western blot analysis using proteins extracted from human retina and by immunohistochemistry. Autoantibody titers against recoverin and enolase were measured by ELISA. RESULTS: We identified a higher prevalence of anti-retinal autoantibodies in retinopathy patients. Ninety-one patients' sera (47.1%) showed autoantibodies of various specificities with a higher incidence of antibodies present in retinopathy patients diagnosed with cancer (33/52; 63.5%; p = 0.009) than in retinopathy patients without cancer (58/141; 41.1%). The average age of PR patients was 62.0 years, and that of AR patients was 55.9 years. Autoantibodies against recoverin (p23) were only present in the sera of PR patients, autoantibodies against unknown p35 were more common in patients with AR, while anti-enolase (anti-p46) autoantibodies were nearly equally distributed in the sera of patients with PR and those with AR. In the seropositive patients, the autoantibodies persisted over a long period of time – from months to years. A rebound in anti-recoverin autoantibody titer was found to be associated with exacerbations in visual symptoms but not in the recurrence of cancer. When compared to sera from healthy subjects, autoantibodies against retinal proteins from both groups of patients were cytotoxic to retinal cells, indicating their pathogenic potential. CONCLUSIONS: These studies showed that patients with sudden or subacute, unexplained loss of vision of retinal origin have anti-retinal antibodies in a broad range of specificity and indicate the need for autoantibody screening. Follow-up tests of antibody levels may be useful as a biomarker of disease activity associated with worsening of vision. Moreover, the heterogeneity in autoantibody specificity may explain the variation and complexity of clinical symptoms in retinopathy patients

    De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy

    Get PDF
    X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree

    Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells

    Get PDF
    Retinitis pigmentosa (RP) is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS) cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP

    Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration

    Get PDF
    PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation

    Leber Congenital Amaurosis Associated with AIPL1: Challenges in Ascribing Disease Causation, Clinical Findings, and Implications for Gene Therapy

    Get PDF
    Leber Congenital Amaurosis (LCA) and Early Childhood Onset Severe Retinal Dystrophy are clinically and genetically heterogeneous retinal disorders characterised by visual impairment and nystagmus from birth or early infancy. We investigated the prevalence of sequence variants in AIPL1 in a large cohort of such patients (n = 392) and probed the likelihood of disease-causation of the identified variants, subsequently undertaking a detailed assessment of the phenotype of patients with disease-causing mutations. Genomic DNA samples were screened for known variants in the AIPL1 gene using a microarray LCA chip, with 153 of these cases then being directly sequenced. The assessment of disease-causation of identified AIPL1 variants included segregation testing, assessing evolutionary conservation and in silico predictions of pathogenicity. The chip identified AIPL1 variants in 12 patients. Sequencing of AIPL1 in 153 patients and 96 controls found a total of 46 variants, with 29 being novel. In silico analysis suggested that only 6 of these variants are likely to be disease-causing, indicating a previously unrecognized high degree of polymorphism. Seven patients were identified with biallelic changes in AIPL1 likely to be disease-causing. In the youngest subject, electroretinography revealed reduced cone photoreceptor function, but rod responses were within normal limits, with no measurable ERG in other patients. An increasing degree and extent of peripheral retinal pigmentation and degree of maculopathy was noted with increasing age in our series. AIPL1 is significantly polymorphic in both controls and patients, thereby complicating the establishment of disease-causation of identified variants. Despite the associated phenotype being characterised by early-onset severe visual loss in our patient series, there was some evidence of a degree of retinal structural and functional preservation, which was most marked in the youngest patient in our cohort. This data suggests that there are patients who have a reasonable window of opportunity for gene therapy in childhood

    Rd9 Is a Naturally Occurring Mouse Model of a Common Form of Retinitis Pigmentosa Caused by Mutations in RPGR-ORF15

    Get PDF
    Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy

    Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    Get PDF
    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes
    corecore