500 research outputs found

    Submarine slope failures along the convergent continental margin of the Middle America Trench

    Get PDF
    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ∼1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated

    CRISP-EQ: Costa Rican Seismogenic potential outlined by IODP drilling and the 2002 Osa earthquake sequence

    Get PDF
    Interplate earthquakes in subduction zones are generated in the seismogenic zone, i.e. the segment of the plate boundary where unstable slip occurs. Understanding the mechanisms that control the updip and downdip limits of this zone, as well as the nature and role of asperities within it, provide significant insights into the rupture size and dynamics of the world’s largest earthquakes. The Costa Rica Seismogenesis Project (CRISP) is designed to understand the processes that control nucleation and seismic rupture propagation of large earthquakes at erosive subduction zones (Ranero et al. 2007). In 2002 a magnitude Mw=6.4 earthquake may have nucleated at the subduction thrust to be penetrated and sampled by CRISP, 40 km west of Osa Peninsula (Figure 1). However, global event localization is associated with too large errors to prove that the event actually occurred at a location and depth to be reachable by riser drilling. We have compiled a database including foreshocks, the main shock, and ~400 aftershocks, with readings from all the seismological networks that recorded the 2002 Osa sequence locally (Figure 1). This includes a temporal network of oceanbottom hydrophones (OBH) that happened to be installed close to the area (Arroyo et al. 2009). The greatly improved coverage provided by the OBH enable us to better constrain the event relocations that we are presently undertaking. Within the frame of a proposal recently submitted to DFG with IODP emphasis, detailed inspection of the data and 3-D data modelling will be carried out to yield source parameters that can be rated against structural information from seismic and drilling constraints. Moreover, teleseismic waveform inversion will provide additional constraints for the centroid depth of the 2002 Osa earthquake, allowing further study of the focal mechanism. This sequence is the latest at the Costa Rican seismogenic zone to date, in a segment of the erosional margin where seamount-covered oceanic floor is presently subducting (Figure 1). It took place trenchward from a 1999 Mw=6.9 earthquake sequence, that it is thought to have been nucleated by a seamount acting like an asperity (Bilek et al. 2003). The work proposed here aims to provide definite evidence that the planned Phase B of CRISP will be successful in drilling the seismogenic coupling zone. Furthermore, the seismological data will be interpreted jointly with thermal and drilling data from IODP Expedition 334 to refine the link between temperature and seismogenesis at erosive convergent margins

    Interplate seismicity at the CRISP site: the 2002 Osa earthquake sequence

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) is designed to explore the processes involved in the nucleation of large interplate earthquakes in erosional subduction zones. On 16 June 2002 a magnitude Mw=6.4 earthquake and its aftershocks may have nucleated at the subduction thrust to be penetrated and sampled by CRISP, ~40 km west of Osa Peninsula. Global event locations present uncertainties too large to prove that the event actually occurred at a location and depth reachable by riser drilling. We have compiled a database including foreshocks, the main shock, and ~400 aftershocks, with phase arrival times from all the seismological networks that recorded the 2002 Osa sequence locally. This includes a temporal network of ocean-bottom hydrophones (OBH) that happened to be installed close to the area at the time of the earthquake. The coverage increase provided by the OBH network allow us to better constrain the event relocations, and to further analyze the seismicity in the vicinity of Osa for the six months during which they were deployed. Moreover, we undertook teleseismic waveform inversion to provide additional constraints for the centroid depth of the 2002 Osa earthquake, allowing further study of the focal mechanism. Along the Costa Rican seismogenic zone, the 2002 Osa sequence is the most recent. It nucleated in the SE region of the forearc where this erosional margin is underthrust by a seamount covered ocean plate. A Mw=6.9 earthquake sequence occurred in 1999, co-located with a subducted ridge and associated seamounts. The Osa mainshock and first hours of aftershocks began in the CRISP area, ~30 km seaward of the 1999 sequence. In the following two weeks, subsequent aftershocks migrated into the 1999 aftershock area and also clustered in an area updip from it. The Osa updip seismicity apparently occurred where interplate temperatures are ~100°C or less. In this study, we present the relocation of the 2002 Osa earthquake sequence and background seismicity using different techniques and a moment tensor inversion for the mainshock, and discuss the corresponding uncertainties, in an effort to provide further evidence that the planned Phase B of CRISP will be successful in drilling the seismogenic coupling zone

    Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis

    Get PDF
    [1] Fluid distribution in convergent margins is by most accounts closely related to tectonics. This association has been widely studied at accretionary prisms, but at half of the Earth's convergent margins, tectonic erosion grinds down overriding plates, and here fluid distribution and its relation to tectonics remain speculative. Here we present a new conceptual model for the hydrological system of erosional convergent margins. The model is based largely on new data and recently published observations from along the Middle America Trench offshore Nicaragua and Costa Rica, and it is consistent with observations from other erosional margins. The observations indicate that erosional margins possess previously unrecognized distinct hydrogeological systems: Most fluid contained in the sediment pores and liberated by early dehydration reactions drains from the plate boundary through a fractured upper plate to seep at the seafloor across the slope, rather than migrating along the décollement toward the deformation front as described for accretionary prisms. The observations indicate that the relative fluid abundance across the plate-boundary fault zone and fluid migration influence long-term tectonics and the transition from aseismic to seismogenic behavior. The segment of the plate boundary where fluid appears to be more abundant corresponds to the locus of long-term tectonic erosion, where tectonic thinning of the overriding plate causes subsidence and the formation of the continental slope. This correspondence between observations indicates that tectonic erosion is possibly linked to the migration of overpressured fluids into the overriding plate. The presence of overpressured fluids at the plate boundary is compatible with the highest flow rates estimated at slope seeps. The change from aseismic to seismogenic behavior along the plate boundary of the erosional margin begins where the amount of fluid at the fault declines with depth, indicating a control on interplate earthquakes. A previously described similar observation along accreting plate boundaries strongly indicates that fluid abundance exerts a first-order control on interplate seismogenesis at all types of subduction zones. We hypothesize that fluid depletion with depth increases grain-to-grain contact, increasing effective stress on the fault, and modifies fault zone architecture from a thick fault zone to a narrower zone of localized slip

    Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data

    Get PDF
    The Middle America Trench between the Cocos Ridge and a well-studied corridor off the Nicoya Peninsula has a more varied morphology and structure than previously reported. The morphological positive features on the lower plate significantly affect the upper plate structure. The Cocos Ridge has uplifted the margin opposite the Osa Peninsula. Northwest of Cocos Ridge, numerous seamounts on the oceanic crust sculptured the margin as they subducted. A seamount and a huge slump in the trench axis that currently block lateral sediment transport affect the sediment currently accreted and subducted. The greater portion of the trench sediment is subducted beneath a lower slope accretionary mass. Beneath the middle and upper slope is a margin wedge consisting of a high-velocity rock with few internal reflections. Its upper surface has a nondirectional random relief commonly 500 m high in the middle slope area. Overlying this surface is a low-velocity cover of slope sediment which shows little transgressive stratigraphy and can be traced landward into an inferred Eocene section beneath the shelf. The shelf basement is composed of Nicoya complex (ophiolite) with the same acoustic velocity, similar structure, and no apparent dividing geologic boundary with the margin wedge. We favor a seaward continuation of the Nicoya complex to the middle slope and emphasize the evidence for a non-steady state Tertiary tectonic history

    Phytosaur from the Palisades

    Get PDF
    p. 275-282, [2] leaves of plates : ill. ; 24 cm

    Reptiles in Cope Collection

    Get PDF
    p. 485-507 : ill. ; 24 cm.Includes bibliographical references (p. 507)

    Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)

    Get PDF
    Suite à une campagne géophysique réalisée au large de la côte du Perou (croisière Seaperc du R/V "Jean Charcot", juillet 1986), les auteurs proposent une nouvelle interprétation des structures caractérisant la pente continentale de la région étudiée. D'autre part, ils considèrent que cette marge active est une marge active en extension ou bien une marge d'effondrement qui développe un complexe d'accrétion induit par les effondrements de la partie médiane de la pente
    corecore