35 research outputs found

    Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean

    Get PDF
    The link between realism in simulation of the seasonal mean precipitation and summer tropical intraseasonal oscillations and their dependence on cumulus parameterization schemes is investigated using the Florida State University Global Spectral Model (FSUGSM). Forty-member model ensemble simulations of the northern summer season are generated for three different cumulus parameterization schemes [namely, Arakawa-Schubert (Naval Research Laboratory; NRL), Zhang and McFarlane (National Center for Atmospheric Research; NCAR), and Emanuel (Massachusetts Institute of Technology; MIT)]. The MIT scheme simulates the regional pattern of seasonal mean precipitation over the Indian monsoon region well but has large systematic bias in simulating the precipitation over the western Pacific and the Maritime Continent. Although the simulation of details of regional distribution of precipitation over the Indian monsoon region by the NRL and NCAR schemes is not accurate, they simulate the spatial pattern of precipitation over the tropical Indo-Pacific domain closer to observation. The NRL scheme seems to captures the observed northward and eastward propagation of intraseasonal precipitation anomalies realistically. However, the simulations of the NCAR and MIT schemes are dominated by a westward propagating component. The westward propagating mode seen in the model as well as observations is indicated to be an equatorial Rossby wave modified by the northern summer mean flow. An examination of the relationship between simulation of the model climatology and eastward propagating character of monsoon intraseasonal oscillations (ISOs) in a limited sample shows that the scheme that simulates better seasonal mean pattern of rainfall over the tropical Indo-Pacific domain also simulates better intraseasonal variance and more realistic eastward propagation of monsoon ISOs. Among the parameters known to be important for meridional propagation of the summer monsoon ISOs, the meridional gradient of mean humidity in the lower atmosphere seems to be crucial in determining the northward propagation in the equatorial Indian Ocean (between 10°S and 10°N). For better prediction of the seasonal mean Indian monsoon, therefore, the model climatology should have minimum bias not only over the Indian monsoon region but also over the entire Indo-Pacific basin

    Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations

    Get PDF
    Active and break phases of the Indian summer monsoon are characterized by enhancement and decrease of precipitation over the monsoon trough region. Using genesis data of monsoon low pressure systems (LPS) and circulation data for the period 1954 to 1993, it is shown that the frequency of occurrence of LPS is nearly 3.5 times higher in the active phase of monsoon as compared to the break phase. In addition, the tracks of these synoptic systems are also strongly spatially clustered along the monsoon trough during the active phase of the monsoon. The enhanced (decreased) frequency of occurrence of LPS during active (break) phases is due to modulation of meridional shear of zonal winds and cyclonic vorticity along the monsoon trough by the intraseasonal oscillations (ISO)

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Dependence of Simulation of Boreal Summer Tropical Intraseasonal Oscillations on the Simulation of Seasonal Mean

    Get PDF
    The link between realism in simulation of the seasonal mean precipitation and summer tropical intraseasonal oscillations and their dependence on cumulus parameterization schemes is investigated using the Florida State University Global Spectral Model (FSUGSM). Forty-member model ensemble simulations of the northern summer season are generated for three different cumulus parameterization schemes [namely, Arakawa-Schubert (Naval Research Laboratory; NRL), Zhang and McFarlane (National Center for Atmospheric Research; NCAR), and Emanuel (Massachusetts Institute of Technology; MIT)]. The MIT scheme simulates the regional pattern of seasonal mean precipitation over the Indian monsoon region well but has large systematic bias in simulating the precipitation over the western Pacific and the Maritime Continent. Although the simulation of details of regional distribution of precipitation over the Indian monsoon region by the NRL and NCAR schemes is not accurate, they simulate the spatial pattern of precipitation over the tropical Indo-Pacific domain closer to observation. The NRL scheme seems to captures the observed northward and eastward propagation of intraseasonal precipitation anomalies realistically. However, the simulations of the NCAR and MIT schemes are dominated by a westward propagating component. The westward propagating mode seen in the model as well as observations is indicated to be an equatorial Rossby wave modified by the northern summer mean flow. An examination of the relationship between simulation of the model climatology and eastward propagating character of monsoon intraseasonal oscillations (ISOs) in a limited sample shows that the scheme that simulates better seasonal mean pattern of rainfall over the tropical Indo-Pacific domain also simulates better intraseasonal variance and more realistic eastward propagation of monsoon ISOs. Among the parameters known to be important for meridional propagation of the summer monsoon ISOs, the meridional gradient of mean humidity in the lower atmosphere seems to be crucial in determining the northward propagation in the equatorial Indian Ocean (between 10°S and 10°N). For better prediction of the seasonal mean Indian monsoon, therefore, the model climatology should have minimum bias not only over the Indian monsoon region but also over the entire Indo-Pacific basin

    Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate

    No full text
    Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ∼600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ∼60% and continental genesis increasing by ∼10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India
    corecore