583 research outputs found

    Pseudococcus affinis MASK., new vector of grapevine trichoviruses A and B

    Get PDF
    Research Note Grapevine trichovirus A (GVA) and grapevine trichovirus B (GVB) were successfully transferred with bulk transmission trials under controlled conditions, from infected grapevines to herbaceous hosts by Pseudococcus affinis MASK., a pseudococcid mealybug that may attack grapevines. P. affinis is the fourth mealybug species capable of vectoring GVA and GVB, confirming that transmission by mealybugs of grapevine trichoviruses may not be species-specific

    On the possible relationship between Kober stem grooving and grapevine virus A

    Get PDF
    Investigations were carried out to establish possible correlations of two diseases of the rugose wood complex, i.e. Rupestris stem pitting (RSP) and Kober stem grooving (KSG) with grapevine virus A (GVA) and grapevine leafroll associated viruses I (GLRaV I) and III (GLRaV III). To this purpose 84 clonal accessions of different wine grape cultivars were analyzed by ELISA and by indexing onto the indicators Vitis rupestris, Kober 5BB and LN 33. The results obtained clearly indicated that none of the viruses taken into consideration is apparently involved in the etiology of RSP. Conversely, a remarkably close association of GVA with KSG was discovered

    The BIM-based Integrated Design of the SHiP Project Decay Volume

    Get PDF
    The Search for Hidden Particles (SHiP) experiment is a new general-purpose fixed target facility proposed at the CERN Super Proton Synchrotron accelerator to search for longlived exotic particles associated with Hidden Sectors and Dark Matter. This paper reports on the BIM integrated design of SHiP’s decay volume, a conical steel vessel under vacuum that should host several large particle physics detector systems. The use of BIM characterized the design of the decay volume, both in the modeling and structural design phase, and in the process definition phase for the realization and implementation in the facility of the device. This procedure helps to minimize the risks of incorrect design and construction of the device during the whole process. With the automation of the virtual model and the use of interoperable software, in addition to speeding up the exchange of information, it is possible also to export the detailed information of the structural design directly to the numerical control machines for the prefabrication of the various steel modules. Then, the BIM approach to support the integrated design of the SHiP project decay volume from the conceptual planning to the construction phase is shown in this work

    Noninvasive Ultrasound Monitoring of Embryonic and Fetal Development in Chinchilla lanigera to Predict Gestational Age: Preliminary Evaluation of This Species as a Novel Animal Model of Human Pregnancy

    Get PDF
    Ultrasound is a noninvasive routine method that allows real-time monitoring of fetal development in utero to determine gestational age and to detect congenital anomalies and multiple pregnancies. To date, the developmental biology of Chinchilla lanigera has not yet been characterized. This species has been found to undergo placentation, long gestation, and fetal dimensions similar to those in humans. The aim of this study was to assess the use of high-frequency ultrasound (HFUS) and clinical ultrasound (US) to predict gestational age in chinchillas and evaluate the possibility of this species as a new animal model for the study of human pregnancy. In this study, 35 pregnant females and a total of 74 embryos and fetuses were monitored. Ultrasound examination was feasible in almost all chinchilla subjects. It was possible to monitor the chinchilla embryo with HFUS from embryonic day (E) 15 to 60 and with US from E15 to E115 due to fetus dimensions. The placenta could be visualized and measured with HFUS from E15, but not with US until E30. From E30, the heartbeat became detectable and it was possible to measure fetal biometrics. In the late stages of pregnancy, stomach, eyes, and lenses became visible. Our study demonstrated the importance of employing both techniques while monitoring embryonic and fetal development to obtain an overall and detailed view of all structures and to recognize any malformation at an early stage. Pregnancy in chinchillas can be confirmed as early as the 15th day postmating, and sonographic changes and gestational age are well correlated. The quantitative measurements of fetal and placental growth performed in this study could be useful in setting up a database for comparison with human fetal ultrasounds. We speculate that, in the future, the chinchilla could be used as an animal model for the study of US in human pregnancy

    Understanding the mechanisms of lung mechanical stress

    Get PDF
    Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area) or strain (any forced change in length in relation to the initial length) and shear stress (the stress component parallel to a given surface). The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders

    Reduction in regulatory T cells in preterm newborns is associated with necrotizing enterocolitis

    Get PDF
    BackgroundDespite multifactorial pathogenesis, dysregulation of inflammatory immune response may play a crucial role in necrotizing enterocolitis (NEC). Regulatory T cells (Tregs) are involved in immune tolerance early in life. We aimed to investigate the predicting role of Tregs in developing NEC in neonates at high risk.MethodsWe studied six newborns with a diagnosis of NEC (cases) in comparison with 52 controls (without NEC). We further classified controls as neonates with feeding intolerance (FI) and neonates without it (FeedTol). The rate of female and male neonates (sex defined as a biological attribute) was similar. We analyzed the blood frequency of Tregs (not overall numbers) at three time points: 0-3 (T0), 7-10 (T1), and 27-30 (T2) days after birth by flow cytometry. Neonates' sex was defined based on the inspection of external genitalia at birth.ResultsWe observed, at T0, a significantly lower frequency of Tregs in NEC cases (p < 0.001) compared with both FI (p < 0.01) and FeedTol controls (p < 0.01). Multivariate analysis reported that the occurrence of NEC was independently influenced by Treg frequency at birth (ss 2.98; p = 0.039).ConclusionTregs frequency and features in the peripheral blood of preterm neonates, early in life, may contribute to identifying neonates at high risk of developing NEC.ImpactRegulatory T cells may play a pivotal role in regulating the immune response in early life. Reduction of Tregs in early life could predispose preterm newborns to necrotizing enterocolitis.Early markers of necrotizing enterocolitis are still lacking. We demonstrated a predicting role of assessment of regulatory T cells in the diagnosis of this gastrointestinal emergency.Early identification of newborns at high risk of necrotizing enterocolitis through measurement of regulatory T cells may guide clinicians in the management of preterm newborns in order to reduce the development of this severe condition

    Masonry behaviour and modelling

    Get PDF
    In this Chapter we present the basic experimental facts on masonry materials and introduce simple and refined models for masonry. The simple models are essentially macroscopic and based on the assumption that the material is incapable of sustaining tensile loads (No-Tension assumption). The refined models account for the microscopic structure of masonry, modeling the interaction between the blocks and the interfaces.(undefined

    GIS integration of DInSAR measurements, geological investigation and historical surveys for the structural monitoring of buildings and infrastructures. An application to the Valco San Paolo urban area of Rome

    Get PDF
    Structural health monitoring is a crucial issue in areas with different hazard sources, such as Italy. Among non-invasive monitoring techniques, remote sensing provides useful information in supporting the management process and safety evaluations, reducing the impact of disturbances on the functionality of construction systems. The ground displacement time-series based on the analysis of Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, as well as the information about the geology of the area and the geometry of the construction under monitoring, provides useful data for the built environment's structural assessment. This paper focuses on the structural monitoring and damage assessment of constructions based on the GIS integration of DInSAR measurements, geological investigation, historical surveys and 3D modeling. The methodology is applied to the residential area of Valco San Paolo in the city of Rome (Italy). Once the geological interpretation has confirmed the results of the DInSAR measurements, a quick damage assessment that considers all the possible conditions of the pre-existing damage at the time zero of the monitoring is shown for a damaged manufact in the area. The presented results highlight how the strategy to correlate the DInSAR-monitored ground settlements with the damage scales allows potentially to monitor continuous construction systems

    Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics

    Get PDF
    Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues
    • 

    corecore