6,520 research outputs found

    The HARPS-TERRA project I. Description of the algorithms, performance and new measurements on a few remarkable stars observed by HARPS

    Full text link
    Doppler spectroscopy has uncovered or confirmed all the known planets orbiting nearby stars. Two main techniques are used to obtain precision Doppler measurements at optical wavelengths. The first approach is the gas cell method, which consists on the least-squares matching of the spectrum of Iodine imprinted on the spectrum of the star. The second method relies on the construction of a stabilized spectrograph externally calibrated in wavelength. The most precise stabilized spectrometer in operation is HARPS, operated by ESO in La Silla Observatory/Chile. The Doppler measurements obtained with HARPS are typically obtained using the Cross-Correlation Function technique (CCF). It consists of multiplying the stellar spectrum with a weighted binary mask and finding the minimum of such product as a function of the Doppler shift. It is known that CCF is suboptimal in exploiting the Doppler information in the stellar spectrum. Here, we describe an algorithm to obtain precision RV measurements using least-squares matching of each observed spectrum to a high signal-to-noise ratio template derived from the same observations. Such algorithm is implemented in our software called HARPS-TERRA (Template Enhanced Radial velocity Re-analysis Application). New radial velocity measurements on a representative sample of stars observed by HARPS is used to illustrate the benefits of the proposed method. We show that, compared to CCF, template matching provides a significant improvement in accuracy, specially when applied to M dwarfs.Comment: Accepted in ApJ supplement series. Main manuscript contains 40 pages, 17 figures and 6 Tables. Table 7 to 14 (page 41-90) contain the relevant time series. Table 15 contains the HARPS-TERRA, HIRES and PFS RV measurements used in http://arxiv.org/abs/1202.0446. Machine readable tables will the provided in the journal version of the manuscrip

    Deriving Iodine-free spectra for high-resolution echelle spectrographs

    Full text link
    We describe a new method to derive clean, iodine-free spectra directly from observations acquired using high-resolution echelle spectrographs equipped with iodine cells. The main motivation to obtain iodine-free spectra is to use portions of the spectrum that are superimposed with the dense forest of iodine absorption lines, in order to retrieve lines that can be used to monitor the magnetic activity of the star, helping to validate candidate planets. In short, we provide a straight-forward methodology to clean the spectra by using the forward model used to derive radial velocities, the Line Spread Function information plus the stellar spectrum without iodine to reconstruct and subtract the iodine spectrum from the observations. We show our results using observations of the star τ\tau Ceti acquired with the PFS, HIRES and UCLES spectrographs, reaching an iodine-free spectrum correction at the \sim1% RMS level. We additionally discuss the limitations and further applications of the method.Comment: 15 pages, 7 figures. Accepted for publication in A

    Detection of the nearest Jupiter analog in radial velocity and astrometry data

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The presence of Jupiter is crucial to the architecture of the Solar System and models underline this to be a generic feature of planetary systems. We find the detection of the difference between the position and motion recorded by the contemporary astrometric satellite Gaia and its precursor Hipparcos can be used to discover Jupiter-like planets. We illustrate how observations of the nearby star ε\varepsilon Indi A giving astrometric and radial velocity data can be used to independently find the orbit of its suspected companion. The radial velocity and astrometric data provide complementary detections which allow for a much stronger solution than either technique would provide individually. We quantify ε\varepsilon Indi A b as the closest Jupiter-like exoplanet with a mass of 3 MJupM_{Jup} on a slightly eccentric orbit with an orbital period of 45 yr. While other long-period exoplanets have been discovered, ε\varepsilon Indi A b provides a well constrained mass and along with the well-studied brown dwarf binary in orbit around ε\varepsilon Indi A means that the system provides a benchmark case for our understanding of the formation of gas giant planets and brown dwarfs.Peer reviewe

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented

    The Lick-Carnegie Exoplanet Survey: A Saturn-Mass Planet in the Habitable Zone of the Nearby M4V Star HIP 57050

    Get PDF
    Precision radial velocities from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of 0.3 Jupiter-mass, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the radial velocity variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of approximately 230 K. The star has a metallicity of [Fe/H] = 0.32+/-0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is ~7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with HST. At the expected planetary effective temperature, the atmosphere may contain water clouds.Comment: 20 pages, 5 figures, 3 tables, to appear in the May 20 issue of ApJ

    Sub-Saturn Planet Candidates to HD 16141 and HD 46375

    Get PDF
    Precision Doppler measurements from the Keck/HIRES spectrometer reveal periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD 16141 (G5 IV) has a period of 75.8 d and a velocity amplitude of 11 m/s, yielding a companion having Msini = 0.22 Mjup and a semimajor axis, a = 0.35 AU. HD 46375 (K1 IV/V) has a period of 3.024 d and a velocity amplitude of 35 m/s, yielding a companion with Msini=0.25 Mjup, a semimajor axis of a = 0.041 AU, and an eccentricity of 0.04 (consistent with zero). These companions contribute to the rising planet mass function toward lower masses.Comment: 4 Figure

    Limits to Transits of the Neptune-mass planet orbiting Gl 581

    Full text link
    We have monitored the Neptune-mass exoplanet-hosting M-dwarf Gl 581 with the 1m Swope Telescope at Las Campanas Observatory over two predicted transit epochs. A neutral density filter centered at 550nm was used during the first epoch, yielding 6.33 hours of continuous light curve coverage with an average photometric precision of 1.6 mmags and a cadence of 2.85 min. The second epoch was monitored in B-band over 5.85 hours, with an average photometric precision of 1.2 mmags and 4.28 min cadence. No transits are apparent on either night, indicating that the orbital inclination is less than 88.1 deg for all planets with radius larger than 0.38 R_Nep = 1.48 R_Earth. Because planets of most reasonable interior composition have radii larger than 1.55 R_Earth we place an inclination limit for the system of 88.1 deg. The corresponding minimum mass of Gl 581b remains 0.97 M_Nep = 16.6 M_Earth.Comment: 7 pages, 2 figures, 1 table, to appear in PAS

    The Lick-Carnegie Survey: A New Two-Planet System Around the Star HD 207832

    Full text link
    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of 0.56 and 0.73 Jupiter-masses with orbital periods of ~162 and ~1156 days, and eccentricities of 0.13 and 0.27, respectively. Stromgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.Comment: 23 pages, 4 figures, 5 tables, accepted for publication in Ap
    corecore