Precision radial velocities from Keck/HIRES reveal a Saturn-mass planet
orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of 0.3
Jupiter-mass, an orbital period of 41.4 days, and an orbital eccentricity of
0.31. V-band photometry reveals a clear stellar rotation signature of the host
star with a period of 98 days, well separated from the period of the radial
velocity variations and reinforcing a Keplerian origin for the observed
velocity variations. The orbital period of this planet corresponds to an orbit
in the habitable zone of HIP 57050, with an expected planetary temperature of
approximately 230 K. The star has a metallicity of [Fe/H] = 0.32+/-0.06 dex, of
order twice solar and among the highest metallicity stars in the immediate
solar neighborhood. This newly discovered planet provides further support that
the well-known planet-metallicity correlation for F, G, and K stars also
extends down into the M-dwarf regime. The a priori geometric probability for
transits of this planet is only about 1%. However, the expected eclipse depth
is ~7%, considerably larger than that yet observed for any transiting planet.
Though long on the odds, such a transit is worth pursuing as it would allow for
high quality studies of the atmosphere via transmission spectroscopy with HST.
At the expected planetary effective temperature, the atmosphere may contain
water clouds.Comment: 20 pages, 5 figures, 3 tables, to appear in the May 20 issue of ApJ