478 research outputs found

    Fluctuation-Dissipation Relations of a Tunnel Junction Driven by a Quantum Circuit

    Get PDF
    We derive fluctuation-dissipation relations for a tunnel junction driven by a high impedance microwave resonator, displaying strong quantum fluctuations. We find that the fluctuation-dissipation relations derived for classical forces hold, provided the effect of the circuit's quantum fluctuations is incorporated into a modified non-linear I(V)I(V) curve. We also demonstrate that all quantities measured under a coherent time dependent bias can be reconstructed from their dc counterpart with a photo-assisted tunneling relation. We confirm these predictions by implementing the circuit and measuring the dc current through the junction, its high frequency admittance and its current noise at the frequency of the resonator.Comment: Publisehd as Physical Review Letters, 114, 12680

    Draft Genome Sequence of the Flagellated Xanthomonas fuscans subsp. fuscans Strain CFBP 4884

    Get PDF
    Article de revue (Article scientifique dans une revue à comité de lecture)International audienceWe report the draft genome sequence of the flagellated strain CFBP 4884 of Xanthomonas fuscans subsp. fuscans, which was isolatedin an outbreak of common bacterial blight of beans along with non-flagellated strains. Comparative genomics will allowone to decipher the genomic diversity of strains cohabiting in epidemics.</p

    Transformation kinetics of alloys under non-isothermal conditions

    Full text link
    The overall solid-to-solid phase transformation kinetics under non-isothermal conditions has been modeled by means of a differential equation method. The method requires provisions for expressions of the fraction of the transformed phase in equilibrium condition and the relaxation time for transition as functions of temperature. The thermal history is an input to the model. We have used the method to calculate the time/temperature variation of the volume fraction of the favored phase in the alpha-to-beta transition in a zirconium alloy under heating and cooling, in agreement with experimental results. We also present a formulation that accounts for both additive and non-additive phase transformation processes. Moreover, a method based on the concept of path integral, which considers all the possible paths in thermal histories to reach the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En

    A Nanoflare Distribution Generated by Repeated Relaxations Triggered by Kink Instability

    Full text link
    Context: It is thought likely that vast numbers of nanoflares are responsible for the corona having a temperature of millions of degrees. Current observational technologies lack the resolving power to confirm the nanoflare hypothesis. An alternative approach is to construct a magnetohydrodynamic coronal loop model that has the ability to predict nanoflare energy distributions. Aims: This paper presents the initial results generated by such a model. It predicts heating events with a range of sizes, depending on where the instability threshold for linear kink modes is encountered. The aims are to calculate the distribution of event energies and to investigate whether kink instability can be predicted from a single parameter. Methods: The loop is represented as a straight line-tied cylinder. The twisting caused by random photospheric motions is captured by two parameters, representing the ratio of current density to field strength for specific regions of the loop. Dissipation of the loop's magnetic energy begins during the nonlinear stage of the instability, which develops as a consequence of current sheet reconnection. After flaring, the loop evolves to the state of lowest energy where, in accordance with relaxation theory, the ratio of current to field is constant throughout the loop and helicity is conserved. Results: The results suggest that instability cannot be predicted by any simple twist-derived property reaching a critical value. The model is applied such that the loop undergoes repeated episodes of instability followed by energy-releasing relaxation. Hence, an energy distribution of the nanoflares produced is collated. Conclusions: The final energy distribution features two nanoflare populations that follow different power laws. The power law index for the higher energy population is more than sufficient for coronal heating.Comment: 13 pages, 18 figure

    Dose-Additive Carcinogenicity of a Defined Mixture of “Dioxin-like Compounds”

    Get PDF
    Use of the dioxin toxic equivalency factor (TEF) approach in human risk assessments assumes that the combined effects of dioxin-like compounds in a mixture can be predicted based on a potency-adjusted dose-additive combination of constituents of the mixture. In this study, we evaluated the TEF approach in experimental 2-year rodent cancer bioassays with female Harlan Sprague-Dawley rats receiving 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of the three compounds. Statistically based dose–response modeling indicated that the shape of the dose–response curves for hepatic, lung, and oral mucosal neoplasms was the same in studies of the three individual chemicals and the mixture. In addition, the dose response for the mixture could be predicted from a combination of the potency-adjusted doses of the individual compounds. Finally, we showed that use of the current World Health Organization dioxin TEF values adequately predicted the increased incidence of liver tumors (hepatocellular adenoma and cholangiocarcinoma) induced by exposure to the mixture. These data support the use of the TEF approach for dioxin cancer risk assessments

    Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome

    Get PDF
    The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris

    EIT Observations of the Extreme Ultraviolet Sun

    Full text link
    The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops
    corecore