220 research outputs found
Refractive Index of Humid Air in the Infrared: Model Fits
The theory of summation of electromagnetic line transitions is used to
tabulate the Taylor expansion of the refractive index of humid air over the
basic independent parameters (temperature, pressure, humidity, wavelength) in
five separate infrared regions from the H to the Q band at a fixed percentage
of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra
for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023
hPa, and a set of relative humidities from 5 to 60%. These choices reflect the
prospective application to characterize ambient air at mountain altitudes of
astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table
VLT/NACO astrometry of the HR8799 planetary system. L'-band observations of the three outer planets
HR8799 is so far the only directly imaged multiple exoplanet system. The
orbital configuration would, if better known, provide valuable insight into the
formation and dynamical evolution of wide-orbit planetary systems. We present
L'-band observations of the HR8799 system obtained with NACO at VLT, adding to
the astrometric monitoring of the planets HR8799b, c and d. We investigate how
well the two simple cases of (i) a circular orbit and (ii) a face-on orbit fit
the astrometric data for HR8799d over a total time baseline of ~2 years. The
results indicate that the orbit of HR8799d is inclined with respect to our line
of sight, and suggest that the orbit is slightly eccentric or non-coplanar with
the outer planets and debris disk.Comment: 5 pages, 4 figures, 1 table, accepted for publication in A\&A.
Updated version includes minor changes made in the proof
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
MATISSE, perspective of imaging in the mid-infrared at the VLTI
International audienceMATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime
Recommended from our members
Simple DFT-LSDA modeling of the molecular-like aspects of ultra-thin film properties
Ordered ultra-thin films (UTF`s) are atomic n-layers (n = 1,2,3,...) with translational symmetry in-plane and molecular-like inter-planar spacings. Though commonly used (especially at relatively large n-values) as models of crystalline surfaces, they are intrinsically interesting and of growing technological significance as the basic building blocks of multi-layer electronic devices. Predicting the structure and properties of even a simple diatomic 1-layer means addressing aspects of molecular binding (and boundary conditions) in the context of an extended, periodically bounded system. At the level of refinement provided by the local spin density approximation to Density Functional Theory, the baseline standard of today`s predictive, chemically specific solid-state calculations, a number of technical and fundamental issues arise. The authors focus on treatment of the isolated atoms, on basis sets, and on numerical precision, as illustrated by the Fe atom and BN 1- and 2-layer calculations. Computational requirements are illustrated by a brief summary of recently completed calculations on crystalline sapphire, {alpha}-Al{sub 2}O{sub 3}, which used the same code
- …
