
Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. 

TITLE: SIMPLE DFT-LSDA MODELLING OF THE MOLECULAR-LIKE 
ASPECTS OF ULTRA-THIN'FILM PROPERTIES * 

AUTHOR(S): Samuel B. Trickey, U. of Florida; Gainesville, FL. 
Richard 3.5: Matthar, U. of Florida, Gainesville, FL. 
Jonathan Carl Boettger, Theoretical Division, T-1 , LANL 

SUBMITTED TO: Proceedings o f  the Thi rd  - UNAM-CRAY Supercomputi ng 
Conference on Computational Chemistry (Mexico City, Mexico) . _ .  

A 
By acceptance of this article. the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce 
the published form of this contribution. or to allow others to do so. for US. Government purposes. 

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. 

Los Alamos National Laboratory 
Los Alamos,New Mexico 87545 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 

. 



DISCLAIMER 

Thii report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employes, makes any warranty, express or implied. or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer, or otherwise dots not necessarily constitute or imply its endorsement, Iccom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 



Simple DFT-LSDA Modelling of the 
Molecular-like Aspects of Ultra-thin Film 

Properties 
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‘Quantum Theory Project, Univ. of Florida, Gainesville, FL 32611-8435, USA 
*Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Ordered ultra-thin Films (UTF’s) are atomic n-layers (n = 1,2,3,. . .) with translational sym- 
metry in-plane and molecular-like inter-planar spacings. Though commonly used (especially at 
relatively large *values) as models of crystalline surfaces, they are intrinsically interesting and 
of growing technological significance as the basic building blocks of multi-layer electronic devices. 
Predicting the structure and properties of even a simple diatomic 1-layer means addressing as- 
pects of molecular binding (and boundary conditions) in the context of an extended, periodically 
bounded system. At the level of refinement provided by the local spin density approximation 
to Density Functional Theory, the baseline standard of today’s predictive, chemically specific 
solid-state calculations, a number of technical and fundamental issues arise. We focus on treat- 
ment of the isolated atoms, on basis sets, and on numerical precision, as illustrated by the Fe 
atom and BN 1- and 2-layer calculations. Computational requirements are illustrated by a brief 
summary of recently completed calculations on crystalline sapphire, a-Al203, which used the 
same code. 

1. Introduction 
An ordered ultra-thin film (UTF) is a construct abstracted from real multi-layer sys- 

tems in, for example, microelectronics. The abstraction is to assume a self-supporting 
system consisting of n (n = 1,2,3,. . .) planes of atomic nuclei, all with a common trans- 
lational symmetry in-plane (%-9). The electronic structure problem, in the static lattice 
approximation, then has periodic boundary conditions with two-dimensional space groups 
in-plane and vacuum boundary conditions along both positive and negative z-axes. Even 
in-plane such a system may be rather molecular locally. For n 2 2 but modest (say 5 20), 
the transverse electron distribution may be quite molecular in character or, as in BN, 
somewhat peculiar whether viewed from the molecular or crystalline perspective. 

The tasks are to find the minimum enerk  static structure, predict the properties at 
that minimum, characterize the behavior of the sequence with growing n, and compare 
with the associated crystal. The state of the art for such predictive, chemically specific 
studies is to use Density Functional Theory (DFT). As is well known, to use DFT requires 
selection of an approximation to the exchange-correlation kernel. Elsewhere one of us 
[Trickey (1996)l has given evidence that gradient dependent approximations (GDA) are 
not yet well-enough understood to be used for predictive calculations if the intended 
audience includes a significant weighting of experimenters. Thus we use the local spin 
density approximation (LSDA) here. Although details would of course change, none of 
the main themes of the paper would be altered in any draniatic way were a GDA to have 
been used. 
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2. Problems with atoms 
The first task in the list, determination of the cohesive energy Ecoh, leads directly to 

a problem stated most succinctly, to our knowledge, by Dennis Salahub at the Aug. 1995 
Paris DFT meeting: “in practical applications of DFT, atoms are hardest.” That plain 
remark embodies several intertwined issues. 

At the fundamental level, the essential localization of an atom means that self-in- 
teraction-error (SIC) [Perdew & Zunger (1981)] in LSDA, which is positive, cannot be 
reduced via delocalized Kohn-Sham (KS) states such as occur in aggregates. Technically, 
there is impact on computational schemes which use localized basis functions. To control 
systematic error, one needs to calculate the atomic total energies which enter Ecoh with 
the same basis and associated algorithms. Use of an excessively compact basis set for 
the atom, however, will worsen the SIC error, hence artificially enhance the calculated 
binding of the extended system by making the atomic total energy too high. Since small 
basis sets are a common choice for extended systems, the risk is clear. (An excessively 
rich atomic basis will unbalance the calculation, admittedly, but it is rare to encounter 
that problem.) 

Another fundamental point is that a key feature of the KS solution to  the DFT vari- 
ational problem is separation of the system kinetic energy into a large part (T,, the 
contribution from the KS reference system) and a small part (in the exchange correla- 
tion term). Avoiding making T, too high via too compact a basis set is a challenge that 
seems to be underappreciated, especially for the isolated atom. Third, inadequate basis 
set flexibility can lead to erroneous occupancies for the KS orbitals, with potentially 
serious consequences for both the energetics and the KS orbital eigenvalues. Fourth, 
cancellation of core contributions in the calculation of Ecoh is a slippery business; a 
small imbalance between the cores of the aggregate and the separated constituents can 
result in a relatively large error in Ecoh. 

The Fe atom provides an apt illustration. From all-numerical calculations, it has long 
been known that, in LSDA (results here are for the Hedin-Lundqvist model, but the 
points are general), the Fe atom ground state in the central field approximation has 
fractional occupancy of the KS orbitals: [ A r ] 3 d ~ 0 3 d ~ 4 4 s ~ 4 s ~ 6  [Moruzzi et al. (1978)l. 
Some time ago we heard of a gaussian basis calculation which found the lowest LSDA 
energy for the Fe atom to have integer occupation numbers. Etot for the calculation 
appeared higher than plausible, however. 

Beginning with a published 14s9p5d basis [Wachters (1970)], we used our gaussian 
orbitals atoms code GATOMS (which does coulomb integrals analytically and the LSDA 
XC integrals numerically) to study basis set enrichment effects upon the KS occupancy 
and total LSDA energy of the Fe atom. Indeed, the 14s9p5d basis gave 3d64s2 KS 
occupation as lowest in energy. Systematic enlargement of the basis through 20s14plOd 
gave unequivocal KS fractional occupancies identical with the all-numerical results. Even 
at that very large basis, however, Etot was more than 10 mRy above the all-numerical 
result. Finally, with a rationally tempered 20s16p12d (all un-contracted) basis of our 
own construction, the fractional occupancy total energies were 
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Numerical (“exact”): Etot = -2522.369 Rydbergs 
Gaussian basis: Etot = -2522.3593 Rydbergs 

Integer occupancies raised Etot in the gaussian basis by 0.011 Rydberg. 
We were unwilling to deploy an even larger basis in pursuit of the remaining 9.7 mRy 

in total energy, since that residue is an error more than an order of magnitude smaller 
than the shift in Etot, about 0.11 Ry = 1.5 eV, from 14s9p5d to 20s14plOd. Put  this 
in context: a study [Boettger (1993)l of spin-dependent energetics of the Fe 1L used a 
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s-exp onents 
4445500.000000000 
889100.000000000 
177820.000000000 
35564.000000000 
8891.000000000 
3783.404260000 
1609.959260000 
685.089046000 
291.527254000 
124.054150000 
52.789002000 
22.463404300 
9.558895460 
4.067615090 
2.033807550 
1.016903770 
0.508451890 
0.133373150 
0.056754530 
0.024150860 

pexponents 
15102.000000000 
5034.000000000 
1678.000000000 
745.777777000 
331.456780000 
147.314120000 
65.472942000 
29.099085000 
12.932926000 
5.747967100 
2.554652000 
1.135400800 
0.504622570 
0.224275669 
0.100000000 
0.040000000 

d-exponents 
1620.000000000 
405.000000000 
135.000000000 
45.000000000 
19.148936000 
8.148483400 
3.467439700 
1.475506200 
0.627874970 
0.267180830 
0.113693970 
0.040000000 

TABLE 1. 20s16p12d Gaussian basis for Fe atom 

10s7p + lpz3d contracted basis built from a Huzinaga & Sakai (1969) 14s9p5d set with 
augmentations. Even that 1L basis set is rather larger than those commonly used in 
molecular and extended system DFT (or for that matter, Hartree-Fock) calculations. 

As inspection of Table 1 will show, most of the investment in augmenting from 14s9p5d 
to 20s16p12d is to improve the representation of the cusp at the nucleus. Usually it is 
argued that such refinements in core electron orbitals are not significant for calculations 
of Ecoh because of cancellation but it only takes a small failure of cancellation to yield 
potentially substantial errors in Ecoh. 

To summarize: in respect to basis sets, the thrust of Salahub’s point is that every 
truncation error one makes easily can be in the wrong direction, with the resulting 
atomic energy driven upward and Ecoh made artificially large in magnitude. 

3. Ultra-thin films of hexagonal boron nitride 
3.1. Background 

Hexagonal boron nitride (h-BN) pease (1952)l is the natural crystalline state of a layered 
material isoelectronic with graphit% However, instead of being semi-metallic, h-BN is 
an insulator. The experimental and computational literature on h-BN is too extensive to 
review here. References beyond those found here are in, for example, Jia et al. (1996), 
E’urthmiiller, Hafner and Kresse brthmiiller et al. (1995)], Wentzcovitch et al. (1988), 
and Causd et al. (1988). We focus particular attention on Nagashima et al. (1995) on 
the experimental side and upon Blase et al. (1995) and Catellani et al. (1986) on the 
computational side. 

Nagashima et al. (1995) studied the h-BN monolayer deposited epitaxially (by thermal 
decomposition of borazine B ~ N ~ H G )  on Ni, Pd, and Pt( l l1)  via angle-resolved electron 
spectroscopies and concluded that the electronic structure of the h-BN 1L “. . .is almost 
independent of the substrate” and hence that the system is a potentially important 
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example of a stable, weakly physisorbed overlayer. They also noted that “because of 
the strong reduction of the surface reactivity for borazine decomposition due to the 
monolayer BN coating, the growth rate of the following BN layers became extremely 
small . . . ” 

Here we present results of all-electron, full-potential, non-relativistic LSDA calcula- 
tions for the mono- and bilayers of h-BN to explore and illuminate those findings. The 
calculations are an application of the LCGTO-FF electronic structure techniques for so- 
lution of the KS problem as embodied in the program package GTOFF. For brevity the 
reader is referred to prior descriptions [Boettger (1995)]. This work differs from and is 
complementary to that of Blase et al. (1995) in several respects. Their monolayer was 
in fact a supercell calculation and they used pseudopotentials, whereas we treat true 
UTF’s, include all electrons, and study both the 1L and 2L. 

3.2. Basic experimental data 
The experimental lattice parameters for h-BN at room temperature are a = 4.732~ and 
c = 12.587~0 [Lynch & Drickamer (1966), Landolt & Bornstein (1982)], where a0 is the 
Bohr radius. The B-N distance in the basal planes is a factor of l/d shorter than a, 
i.e. 2.732~0. The distance between layers is a factor of 2 shorter than c, whence the 
interplanar B-N distance is 6.294~, a clear indicator of the weak interplanar binding. 
For comparison, molecular BN has a bond length of re = 2.421~0 [Herzberg (1950)l. 

When traced to their origins, all known experimental results for Ecoh of BN ap- 
parently refer to the hexagonal modification. Direct calculation from the CODATA 
[Cox et al. (1989)] tabulations yields an experimental, T = 0 K, Ecoh = -13.43 eV/f.u. 
= -6.71 eV/atom. To correct for the zero-point vibrational energy, it is typical to 
use the Debye model [Lam et al. (1990)l. The relatively weak interplanar binding sug- 
gests exploitation of a planar Brillouin zone (BZ) and a two-dimensional Debye tem- 
perature [Dworkin et al. (1954), Landolt & Bornstein (1982)], which turns out to be 598 
K. In contrast the three-dimensional Debye temperature was measured to  be 323 K 
[Sichel et al. (1976)]. To circumvent the limitations of this model, we approximated a 
newer theoretical result of Nozaki & Itoh (1996) by easily integrable pieces, normalized 
the phonon density of states - the area under the curve - to be six, and obtained a 
zero point energy of 0.34 eV/f.u., which is half of the f%st moment of the function. The 
net result is a static lattice cohesive energy of -6.88 eV/atom. 

3.3. Monolayer and bilayer results 
The hexagonal UTF’s have point group symmetry D3h @m2), as discussed, for example, 
by Doni & Parravicini (1969). The monolayer (bilayer) total energy calculations used a 
30 x 30 (18 x 18) point mesh in the full hexagonal Brillouin zone. Once the equilibrium 
lattice parameters for the two systems were determined, comparison calculations were 
done to  insure that the difference in the two BZ meshes do not introduce artificial energy 
differences between the two systems. Basis sets are tabulated in the Appendix. 

Monolayer total energies were calculated at twelve values of the lattice parameter in the 
range 4.6019~0 5 a 5 4.9319~. All the resulting energies (in Hartree per formula unit) 
are fit almost exactly (indistinguishably on a page-sized plot) by the cubic expression 
Etot = -79.075872+0.204(a-4.7197)2-0.107(a-4.7197)3. The location of the minimum 
agrees with the experimental bulk lattice constant to better than 0.3%. The calculated 
Ecoh is -7.66 eV/atom (relative to spin-polarized, large basis LSDA values for B and N of 
-24.36296 and -54.14929 Hartrees respectively). The overbinding relative to experiment, 
by 0.78 eV/atom, is typical of published calculations for the bulk crystal, indeed not as 
severe as some. See Table VI1 of Furthmuller et al. (1995) for further comparison. 
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FIGURE 1. Energy bands (bare KS eigenvalues) and density of states for the BN monolayer at 
the theoretical equilibrium lattice constant a = 4.7197~0. 

The energy surface for the hexagonal bilayer was computed 'on a 7 x 7 grid with 
the lattice parameter a between 4.6319~0 and 4 . 8 3 1 9 ~  and lattice parameter c between 
11.5374~0 and 13.0874~0. A 6-parameter least-squares fit of a second-order polynomial to 
the calculated energies yields (in Hartree per formula unit) Etot = -79.07785+0.198(~- 
4.7220)2 + O.O000926(c - 11.908)2 + 0.000330(a - 4.7220)(c - 11.908). The bilayer in- 
plane lattice parameter hence deviates from the experimental bulk lattice parameter by 
only 0.2%, but the bilayer interplanar equilibrium spacing is decreased by slightly more 
than 5%. If there is any LSDA lattice contraction in the bulk crystal (our calculations 
were incomplete at the time of writing), then the predicted decrease would, of course, be 
smaller. 

Ecoh for the bilayer is 0.027 eV/atom lower than for the monolayer, Ecoh = -7.69 
eV/atom, very close to the interplanar binding energy in graphite [Trickey et al. (1992)l. 
(By direct testing, the shift which results from use of different BZ scan densities in the 
mono- and bilayers was found to be two orders of magnitude smaller than the energy 
difference between the systems.) Note that this calculated energy difference is consistent 
with the relative difficulty of forming an epitaxial bilayer experimentally (recall the intro- 
ductory summary to this section). In addition to the inhibited thermal decomposition of 
borazine discussed by the experimenters, there is very little energetic advantage to form- 
ing the bilayer since the deposition is done at 800 "C. For comparison, the calculated 
energy advantage of the bilayer over the monolayer is about 625 K per atom pair. 

The intraplanar stiffness of the bilayer, as measured by the coefficient of the quadratic 
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FIGURE 2. As in Fig. 1 for the BN bilayer. See Table 2 for bandwidth comparisons. 

term in a, is about 5% larger than for the monolayer, if the energy of the monolayer is 
also fitted only up to O(a2). If the fitted quadratic form of the energy as a function of 
a and c is diagonalized, the eigenvector corresponding to the smaller eigenvalue has one 
positive and one negative component in the space spanned by the variables a and c. The 
Corresponding physical meaning is that a path on the energy surface which starts from 
the theoretical equilibrium position and follows the direction of the smallest gradient lets 
a grow and c shriik or vice versa. This property leads to the correct behavior under 
uniaxial stress and places the energy minimum at larger a for smaller c. 

The monolayer band structure (bare KS eigenvalues) at the calculated equilibrium 
lattice parameter but with 48 x 48 points in the full Brillouin zone is shown in Fig. 1. 
Band gaps and bandwidths are collected in Table 2. The monolayer is a direct gap 
semiconductor, with an LSDA gap of 4.51 eV at the K point. Allowing for the difference 
in LSDA models, the tables and figures in Blase et al. (1995) agree with this result (the 
text of that paper is not consistent with its tables and figures on this matter). There 
is a slight upward dispersion in the lower (i valence band beginning about 90% of the 
way out from I? toward K, behavior which at least qualitatively is consistent with the 
experimental data of Nagashima et al. (1995), the calculations of Catellani et 01. (1986) 
(crystal) and of Blase et al. (1995) (crystal and supercell monolayer). 

The GW calculation of Blase et al. (1995) yields an estimate of the typical LSDA 
band-gap underestimation of 1.7 eV (we put aside the subtle question of whether the gap 
is shifted from direct to indirect in going from LSDA to GW). Allowing for that underes- 
timate, the close resemblance between the LSDA energy bands for the free monolayer and 
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Authors Egap Wz 
Expt. 5.2 5.8 

Present 1L 4.51 5.49 S.Yb .(.a5 
Present 2L 4.38 4.75, 6.13 5.78 7.60 

Blase et  al. (1995) 1L 4.3 5.40 5.78 7.53 
Blase et al. (1995) Cryst. 3.9 4.12, 6.33 * 5.8 7.4 

Catellani et al. (1986) Cryst. 3.9 4.3, 6.7 6.2 7.4 
TABLE 2. Band gap and valence band widths (all in eV) for monolayer (lL), bilayer (2L), 
and crystalline BN; all in eV. Note that the Blase et al. results cited are their LSDA (Ceper- 
ley-Alder), not GW, values. The two approximate values are taken from their Fig. 2. The 
experimental gap is a crystalline value from Hoffiann et al. (1984); the experimental band 
widths are for the 1L adsorbed on Ni(ll1) from Nagashima et  al. (1995). 

the experimental bands for the epitaxial monolayers on transition metal (111) surfaces 
argues strongly for the claim that the BN layer is indeed physisorbed in the experiments. 

The “interlayer” states (states with density maxima in between BN planes) at the 
lowest unoccupied I?-point [Catellani et al. (1986)], already are in evidence in the mono- 
layer. That is, they are an intrinsic property of a solitary h-BN plane, and not essen- 
tially dependent on the confinement of two layers. The shape of their dispersion agrees 
well with the results found by Blase et al. (1995) in their supercell treatment of the 
BN sheet. The effective mass of those states is close to the freeelectron mass, hence 
a tight-binding approximation description is poor Bber t son  (1984)l. The correspond- 
ing quasi-particle energy bands of Kobayashi et al. (1994) are much higher in energy 
and even remain above the n* band throughout the BZ. We follow Blase et al. (1995) 
in believing that this discrepancy is a consequence of the minimal basis set used by 
Kobayashi et al. (1994), leaving aside the question of the equivalence between KS and 
quasi-particle orbitals. We confirm the sensitivity with respect to basis set changes 
pointed out earlier [VraEko et al. (1990)l by trying a switch to the Tavouktsoglou & 
Huzinaga (1980) minimal basis set but with only the 1s orbital contracted. As a result, 
the LSDA gap between the two lowest unoccupied bands at the r-point grows to 5 eV. 

The band structure of the bilayer is shown in Fig. 2 based on a calculation with 
30 x 30 points in the full BZ. Upward dispersion near K along r-K again is found. 
As expected from the bulk crystalliie value, the 2L bandgap is smaller than for the 
1L (for reference, see the LSDA band structure of the crystal in Blase et al. (1995)). 
The gap is now indirect, that is, behavior which is qualitatively that of the bulk crystal 
appears even with only two planes of h-BN. Furthermore, the two 7r valence bands which 
first appear in the bilayer have widths close to those found by both Blase et al. (1995) 
and Catellani et al. (1986) for the crystal, another clear consequence of weak interplanar 
binding. 

Simply because the monolayer has half as many atoms and electrons in the unit cell as 
the bilayer (or the crystal), what might appear to the unitiated reader as a pseudo- 
degeneracy of the valence n-band at I’ in the monolayer is removed in the bilayer. 
Note that the two-dimensional band structures are not given, as Fig. 1 in the article 
by Rubio et al. (1994) suggests, by a simple clipping of the band structure of the three- 
dimensional crystal. 

The B 1s level energy relative to the vacuum level shifts by 5.7 and 6 eV com- 
pared with the spin-split KS 1st and 1s~. states calculated for the spin-polarized isolated 
atom. The agreement with the experimental value, 4 eV, of this surface core-level shift 
[Hanke et al. (1990)l is rather good taking into account that our non-relativistic calcu- 
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030 -0.302042951149 003 -0.000559257071 
D21 0.008650353218 D12 -0.034485592749 

DII 0.122372773515 DOO -16.077200393719 
ae 9.007386003161 Ce 24.508023199574 

D20 0.941267597296 Do2 0.046604929850 

TABLE 3. Non-zero parameters for the cubic function (4.1) used to  fit E(a, c) for sapphire 
around the calculated energy minimum; see text. 

lations predict K-shell energies that are roughly 20 eV above the experimental values 
[Jia et al. (1996)l of -190.6 eV for B and -398.3 eV for N [Murray (1990)l. We obtain 
core-level shifts of the spin-split Is shell of N of 4.0 and 5.8 eV. 

4. Sapphire and computational requirements 
Finally, to illustrate the computational opportunities for the LCGTO-FF method 

as embodied in the code GTOFF, we summarize recent results obtained by one of us 
[Boettger (1996)l on crystalline sapphire, a-A1203. The crystal structure is rhombohe- 
dral with two formula units per primitive unit cell. Equivalently the structure may be 
treated as hexagonal with six formula units per cell and lattice parameters a and c, where 
c is the length of the primitive cell along the 3-fold axis. The positions of all ten atoms 
in the rhombohedral unit cell can be specified with two internal parameters; the distance 
in units of c from the origin to one of the Al atoms (u) and the distance in units of a 
from the c-axis to each 0 atom (v). Under ambient conditions, the lattice parameters 
[Wyckoff (1964)l are a = 9.0008~0, c = 24.572~0, u = 0.352, and v = 0.306. 

Optimized values of u = 0.352 and v = 0.306, identical with experiment, were found 
for a and c fixed near the experimental values. Experimental evidence is that these two 
internal parameters are rather insensitive to pressure, so optimization of V (cell volume) 
and c /a  proceeded at those values of u and v. The results near' the energy minimum 
were fitted to a cubic form: 

3 3 4  

E(U, C) = . ~+ j (a  - aeli(c- Ce)'. 
i=o j=o 

(4-1) 

The non-zero constants are listed in Table 3 and the calculated results are compared 
with experiment and other calculations in Table 4. Clearly there is remarkably good 
agreement with experiment. Thus sapphire proves to be another example of a system for 
which LSDA folklore is not true: there is no meaningful bond contraction. 

These calculations used segmented 6s3pld A1 and 5s3pld 0 orbital (KS) bases respec- 
tively. The charge and XC fitting basis sets comprised 118 and 88 primitive GTOs per 
unit cell respectively. The calculations were done on a Sun SPARCstation 5 with 40 
MBytes of real memory, 300 MBytes of swap space, and 1.5 GBytes total disk space. 
The integrals step for each geometry requires 160 MBytes of address space, runs for 5.5 
hours, and requires roughly 300 MBytes of disk space. The corresponding scf step 
needs 72 MBytes of address space and runs about 14 minutes per iteration. Between 
10 and 20 iterations are required for convergence, yielding about two completed geome- 
tries per day. Based on those data, plus corresponding experience with the A1 12-layer 
and a 21 atom-per-cell calculation for Na on Al(111), the current limit for GTOFF on a 
personal workstation is a reasonably symmetrical system with about 40 first- and second- 
row atoms or 20 3d transition atoms per unit cell. On a single node of a truly top-end 
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Source U V a c c/a K 
LCGTO (a) 0.354 0.304 8.955 24.61 2.748 284.88 
OLCAO (b) 0.355 0.312 9.136 23.84 2.61 287.3 

Present 0.352 0.306 9.0074 24.508 2.721 287.00 
Expt. 293 K (c) 0.352 0.306 9.0059 24.585 2.730 287.81 
Expt. 293 K (d) 0.352 0.306 9.0008 24.572 2.730 287.33 

Expt. 100 K . . . ... 9.0005 24.566 2.729 287.24 

TABLE 4. Calculated and measured values for the internal lattice parameters (u and v) ,  
hexagonal cell lattice constants (a and c; ao), c/a ratio, and zero-pressure volume (K; 
ai/molecule) of sapphire. References: (a) Salasco et al. (1991); (b) Ching & Xu (1994); 
(c) d’Amour et al. (1978); (d) Wyckoff (1964). Values at 100 K obtained from the 
room temperature data of d’Amour et al. (1978) by applying thermal expansion data from 
Touloukian et al. (1977). 

machine this translates easily into 70-90 atoms per cell. For such large systems the de- 
coupling of remote regions which takes place naturally in the LCGTO ansatz will lead to 
near-linear scaling. Parallelization, which we are about to undertake, wil l  enable straight- 
forward treatment of even more complex systems without resort to pseudo-potentials or 
explicitly “order-N” schemes. 

SBT and RJM were supported in part by the U. S. Army Office of Research under 
Grant No. DAA-H04-95-1-0326. JCB’s work was done under the auspices of the U. 
S. Dept. of Energy. Continuing collaboration with J. R. Sabin is acknowledged with 
pleasure and thanks. 

Appendix A. Boron Nitride Basis Sets 
The KS and fitting function basis sets are listed in Tables 5 and 6 respectively. 
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