472 research outputs found

    Structure of the Large Magellanic Cloud from 2MASS

    Get PDF
    We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that \sigma_M\simlt 0.2^m for this color cut. The sample provides a {\it direct} determination of the LMC disk inclination: 42.3±7.242.3^\circ\pm 7.2^\circ. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.Comment: 24 pages, 9 figures. Submitted to Ap

    Classical Cepheid Pulsation Models. III. The Predictable Scenario

    Full text link
    Within the current uncertainties in the treatment of the coupling between pulsation and convection, limiting amplitude, nonlinear, convective models appear the only viable approach for providing theoretical predictions about the intrinsic properties of radial pulsators. In this paper we present the results of a comprehensive set of Cepheid models computed within such theoretical framework for selected assumptions on their original chemical composition.Comment: 24 pages, 1 latex file containing 6 tables, 10 postscript figures, accepted for publication on Ap

    Discovery of > 200 RR Lyrae Variables in M62: An Oosterhoff I Globular Cluster with a Predominantly Blue HB

    Full text link
    We report on the discovery of a large number of RR Lyrae variable stars in the moderately metal-rich Galactic globular cluster M62 (NGC 6266), which places it among the top three most RR Lyrae-rich globular clusters known. Likely members of the cluster in our studied field, from our preliminary number counts, include about 130 fundamental-mode (RRab) pulsators, with = 0.548 d, and about 75 first-overtone (RRc) pulsators, with = 0.300 d. The average periods and the position of the RRab variables with well-defined light curves in the Bailey diagram both suggest that the cluster is of Oosterhoff type I. However, the morphology of the cluster's horizontal branch (HB) is strikingly similar to that of the Oosterhoff type II globular cluster M15 (NGC 7078), with a dominant blue HB component and a very extended blue tail. Since M15 and M62 differ in metallicity by about one dex, we conclude that metallicity, at a fixed HB type, is a key parameter determining the Oosterhoff status of a globular cluster and the position of its variables in the Bailey diagram.Comment: 5 pages, 4 figures. ApJ Letters, in pres

    Genomic positional conservation identifies topological anchor point (tap)RNAs linked to developmental loci

    Get PDF
    The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider positional conservation across mammalian genomes as an indicator of functional commonality. We identify 665 conserved lncRNA promoters in mouse and human genomes that are preserved in genomic position relative to orthologous coding genes. The identified positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are co-expressed in a tissue-specific manner. Strikingly, over half of all positionally conserved RNAs in this set are linked to distinct chromatin organization structures, overlapping the binding sites for the CTCF chromatin organizer and located at chromatin loop anchor points and borders of topologically associating domains (TADs). These topological anchor point (tap)RNAs possess conserved sequence domains that are enriched in potential recognition motifs for Zinc Finger proteins. Characterization of these non-coding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other ′s expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Thus, interrogation of positionally conserved lncRNAs identifies a new subset of tapRNAs with shared functional properties. These results provide a large dataset of lncRNAs that conform to the ″extended gene″ model, in which conserved developmental genes are genomically and functionally linked to regulatory lncRNA loci across mammalian evolution

    Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC

    Get PDF
    Recent work has demonstrated that nonstimulatory endogenous peptides can enhance T cell recognition of antigen, but MHCI- and MHCII-restricted systems have generated very different results. MHCII-restricted TCRs need to interact with the nonstimulatory peptide–MHC (pMHC), showing peptide specificity for activation enhancers or coagonists. In contrast, the MHCI-restricted cells studied to date show no such peptide specificity for coagonists, suggesting that CD8 binding to noncognate MHCI is more important. Here we show how this dichotomy can be resolved by varying CD8 and TCR binding to agonist and coagonists coupled with computer simulations, and we identify two distinct mechanisms by which CD8 influences the peptide specificity of coagonism. Mechanism 1 identifies the requirement of CD8 binding to noncognate ligand and suggests a direct relationship between the magnitude of coagonism and CD8 affinity for coagonist pMHCI. Mechanism 2 describes how the affinity of CD8 for agonist pMHCI changes the requirement for specific coagonist peptides. MHCs that bind CD8 strongly were tolerant of all or most peptides as coagonists, but weaker CD8-binding MHCs required stronger TCR binding to coagonist, limiting the potential coagonist peptides. These findings in MHCI systems also explain peptide-specific coagonism in MHCII-restricted cells, as CD4–MHCII interaction is generally weaker than CD8–MHCI.National Institutes of Health (U.S.). Pioneer Awar

    On tacit knowledge for philosophy of education

    Get PDF
    This article offers a detailed reading Gascoigne and Thornton’s book Tacit Knowledge (2013), which aims to account for the tacitness of tacit knowledge (TK) while preserving its status as knowledge proper. I take issue with their characterization and rejection of the existential-phenomenological Background—which they presuppose even as they dismiss—and their claim that TK can be articulated “from within”—which betrays a residual Cartesianism, the result of their elision of conceptuality and propositionality. Knowledgeable acts instantiate capacities which we might know we have and of which we can be aware, but which are not propositionally structured at their “core”. Nevertheless, propositionality is necessary to what Robert Brandom calls, in Making It Explicit (1994) and Articulating Reasons (2000), “explicitation”, which notion also presupposes a tacit dimension, which is, simply, the embodied person (the knower), without which no conception of knowledge can get any purchase. On my view, there is no knowledgeable act that can be understood as such separately from the notion of skilled corporeal performance. The account I offer cannot make sense of so-called “knowledge-based” education, as opposed to systems and styles which supposedly privilege “contentless” skills over and above “knowledge”, because on the phenomenological and inferentialist lines I endorse, neither the concepts “knowledge” nor “skill” has any purchase or meaning without the other

    Teleology and Realism in Leibniz's Philosophy of Science

    Get PDF
    This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz

    New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids

    Full text link
    We provided accurate estimates of distances, radii and iron abundances for four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr and VY Sgr. The main aim of this investigation is to constrain their pulsation properties and their location across the Galactic inner disk. We adopted new accurate NIR (J,H,K) light curves and new radial velocity measurements for the target Cepheids to determinate their distances and radii using the Baade-Wesselink technique. In particular, we adopted the most recent calibration of the IR surface brightness relation and of the projection factor. Moreover, we also provided accurate measurements of the iron abundance of the target Cepheids. Current distance estimates agree within one sigma with similar distances based either on empirical or on theoretical NIR Period-Luminosity relations. However, the uncertainties of the Baade-Wesselink distances are on average a factor of 3-4 smaller when compared with errors affecting other distance determinations. Mean Baade-Wesselink radii also agree at one sigma level with Cepheid radii based either on empirical or on theoretical Period-Radius relations. Iron abundances are, within one sigma, similar to the iron contents provided by Andrievsky and collaborators, thus confirming the super metal-rich nature of the target Cepheids. We also found that the luminosity amplitudes of classical Cepheids, at odds with RR Lyrae stars, do not show a clear correlation with the metal-content. This circumstantial evidence appears to be the consequence of the Hertzsprung progression together with the dependence of the topology of the instability strip on metallicity, evolutionary effects and binaries.Comment: 9 pages, 7 figures, A&A accepte

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
    corecore