1,661 research outputs found
Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors
The capacitive behavior of TiC-derived carbon powders in two different electrolytes, NEt4BF4 in acetonitrile AN and NEt4BF4 in propylene carbonate PC, was studied using the cavity microelectrode CME technique. Comparisons of the cyclic voltammograms recorded at 10–1000 mV/s enabled correlation between adsorbed ion sizes and pore sizes, which is important for understanding the electrochemical capacitive behavior of carbon electrodes for electrical double-layer capacitor applications. The CME technique also allows a fast selection of carbon electrodes with matching pore sizes different sizes are needed for the negative and positive electrodes for the respective electrolyte system. Comparison of electrochemical capacitive behavior of the same salt, NEt4BF4, in different solvents, PC and AN, has shown that different pore sizes are required for different solvents, because only partial desolvation of ions occurs during the double-layer charging. Squeezing partially solvated ions into subnanometer pores, which are close to the desolvated ion size, may lead to distortion of the shape of cyclic voltammograms
Creep fatigue of low-cobalt superalloys: Waspalloy, PM U 700 and wrought U 700
The influence of cobalt content on the high temperature creep fatigue crack initiation resistance of three primary alloys was evaluated. These were Waspalloy, Powder U 700, and Cast U 700, with cobalt contents ranging from 0 up to 17 percent. Waspalloy was studied at 538 C whereas the U 700 was studied at 760 C. Constraints of the program required investigation at a single strain range using diametral strain control. The approach was phenomenological, using standard low cycle fatigue tests involving continuous cycling tension hold cycling, compression hold cycling, and symmetric hold cycling. Cycling in the absence of or between holds was done at 0.5 Hz, whereas holds when introduced lasted 1 minute. The plan was to allocate two specimens to the continuous cycling, and one specimen to each of the hold time conditions. Data was taken to document the nature of the cracking process, the deformation response, and the resistance to cyclic loading to the formation of small cracks and to specimen separation. The influence of cobalt content on creep fatigue resistance was not judged to be very significant based on the results generated. Specific conclusions were that the hold time history dependence of the resistance is as significant as the influence of cobalt content and increased cobalt content does not produce increased creep fatigue resistance on a one to one basis
Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems
In "equation-free" multiscale computation a dynamic model is given at a fine,
microscopic level; yet we believe that its coarse-grained, macroscopic dynamics
can be described by closed equations involving only coarse variables. These
variables are typically various low-order moments of the distributions evolved
through the microscopic model. We consider the problem of integrating these
unavailable equations by acting directly on kinetic Monte Carlo microscopic
simulators, thus circumventing their derivation in closed form. In particular,
we use projective multi-step integration to solve the coarse initial value
problem forward in time as well as backward in time (under certain conditions).
Macroscopic trajectories are thus traced back to unstable, source-type, and
even sometimes saddle-like stationary points, even though the microscopic
simulator only evolves forward in time. We also demonstrate the use of such
projective integrators in a shooting boundary value problem formulation for the
computation of "coarse limit cycles" of the macroscopic behavior, and the
approximation of their stability through estimates of the leading "coarse
Floquet multipliers".Comment: Submitted to Journal of Computational Physic
Application of Anodic Stripping Voltammetry to assess sorption performance of an industrial waste entrapped in alginate beads to remove As(V)
AbstractA solid waste material containing Fe(III) and other metal (hydr)oxides produced in a metal surface treatment industry has been investigated for As(V) removal. In order to facilitate sorbent application, 2% of raw material has been entrapped in calcium alginate gel matrix (2% O-CA).An accurate characterization of the sorption on gel beads was undertaken, considering thermodynamic and kinetic aspects. All experiments were carried out at pH 8, since the maximum As(V) sorption was reached between pH 6 and 9. About isotherms, the best fit was obtained considering the Langmuir model and a capacity of 1.9mg/g was achieved. The kinetic profiles evidenced that a quantitative sorption was obtained within 10h. The 2% O-CA beads were also tested for continuous As(V) removal in a fixed bed column. Experiments were performed at constant flow rate, and varying the inlet As(V) concentration. With a view to design an automatic system for As(V) analysis in the outlet flow, the suitability of applying Anodic Stripping Voltammetry was evaluated: the method resulted appropriated to follow the As(V) content in the outlet solutions of columns with metal inlet concentration <1 mg/L.These results suggested that 2% O-CA beads could be a promising sorbent candidate for As(V) removal
La utilización de estudios prospectivos en la elaboración del plan estratégico en una institución científica tecnológica brasileña.
Projeto: 11.11.11.111
Stable Determination of the Electromagnetic Coefficients by Boundary Measurements
The goal of this paper is to prove a stable determination of the coefficients
for the time-harmonic Maxwell equations, in a Lipschitz domain, by boundary
measurements
Inverse problem for wave equation with sources and observations on disjoint sets
We consider an inverse problem for a hyperbolic partial differential equation
on a compact Riemannian manifold. Assuming that and are
two disjoint open subsets of the boundary of the manifold we define the
restricted Dirichlet-to-Neumann operator . This
operator corresponds the boundary measurements when we have smooth sources
supported on and the fields produced by these sources are observed
on . We show that when and are disjoint but
their closures intersect at least at one point, then the restricted
Dirichlet-to-Neumann operator determines the
Riemannian manifold and the metric on it up to an isometry. In the Euclidian
space, the result yields that an anisotropic wave speed inside a compact body
is determined, up to a natural coordinate transformations, by measurements on
the boundary of the body even when wave sources are kept away from receivers.
Moreover, we show that if we have three arbitrary non-empty open subsets
, and of the boundary, then the restricted
Dirichlet-to-Neumann operators for determine the Riemannian manifold to an isometry. Similar result is proven
also for the finite-time boundary measurements when the hyperbolic equation
satisfies an exact controllability condition
Responsibility & Risk: Operationalizing comprehensive climate risk layering in Austria among multiple actors (RESPECT)
Damages caused by climate and weather extremes, such as floods and droughts, have increased over the last few decades and will likely broaden with the progression of climate change and socioeconomic development. Such climate-related risks are already being governed within the framework of natural disaster risk management, as well as climate change adaptation. However, to manage these climate risks more effectively it is necessary to link these two domains under the umbrella of Climate Risk Management (CRM)
On stability of discretizations of the Helmholtz equation (extended version)
We review the stability properties of several discretizations of the
Helmholtz equation at large wavenumbers. For a model problem in a polygon, a
complete -explicit stability (including -explicit stability of the
continuous problem) and convergence theory for high order finite element
methods is developed. In particular, quasi-optimality is shown for a fixed
number of degrees of freedom per wavelength if the mesh size and the
approximation order are selected such that is sufficiently small and
, and, additionally, appropriate mesh refinement is used near
the vertices. We also review the stability properties of two classes of
numerical schemes that use piecewise solutions of the homogeneous Helmholtz
equation, namely, Least Squares methods and Discontinuous Galerkin (DG)
methods. The latter includes the Ultra Weak Variational Formulation
A rigorous analysis of high order electromagnetic invisibility cloaks
There is currently a great deal of interest in the invisibility cloaks
recently proposed by Pendry et al. that are based in the transformation
approach. They obtained their results using first order transformations. In
recent papers Hendi et al. and Cai et al. considered invisibility cloaks with
high order transformations. In this paper we study high order electromagnetic
invisibility cloaks in transformation media obtained by high order
transformations from general anisotropic media. We consider the case where
there is a finite number of spherical cloaks located in different points in
space. We prove that for any incident plane wave, at any frequency, the
scattered wave is identically zero. We also consider the scattering of finite
energy wave packets. We prove that the scattering matrix is the identity, i.e.,
that for any incoming wave packet the outgoing wave packet is the same as the
incoming one. This proves that the invisibility cloaks can not be detected in
any scattering experiment with electromagnetic waves in high order
transformation media, and in particular in the first order transformation media
of Pendry et al. We also prove that the high order invisibility cloaks, as well
as the first order ones, cloak passive and active devices. The cloaked objects
completely decouple from the exterior. Actually, the cloaking outside is
independent of what is inside the cloaked objects. The electromagnetic waves
inside the cloaked objects can not leave the concealed regions and viceversa,
the electromagnetic waves outside the cloaked objects can not go inside the
concealed regions. As we prove our results for media that are obtained by
transformation from general anisotropic materials, we prove that it is possible
to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A:
Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in
IOP-Selec
- …
