127 research outputs found

    Sub-dekahertz ultraviolet spectroscopy of 199Hg+

    Full text link
    Using a laser that is frequency-locked to a Fabry-Perot etalon of high finesse and stability, we probe the 5d10 6s 2S_1/2 (F=0) - 5d9 6s 2D_5/2 (F=2) Delta-m_F = 0 electric-quadrupole transition of a single laser-cooled 199Hg+ ion stored in a cryogenic radio-frequency ion trap. We observe Fourier-transform limited linewidths as narrow as 6.7 Hz at 282 nm (1.06 X 10^15 Hz), yielding a line Q = 1.6 X 10^14. We perform a preliminary measurement of the 5d9 6s2 2D_5/2 electric-quadrupole shift due to interaction with the static fields of the trap, and discuss the implications for future trapped-ion optical frequency standards.Comment: 4 pages, 4 figures, submitted for publicatio

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The fate of carbon in a mature forest under carbon dioxide enrichment

    Get PDF
    Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production

    Influence of root and leaf traits on the uptake of nutrients in cover crops

    Get PDF
    Aims: Cover crops play an important role in soil fertility as they can accumulate large amounts of nutrients. This study aimed at understanding the nutrient uptake capacity of a wide range of cover crops and at assessing the relevance of acquisition strategies. Methods: A field experiment was conducted to characterize 20 species in terms of leaf and root traits. Plant traits were related to nutrient concentration and shoot biomass production with a redundancy analysis. Acquisition strategies were identified using a cluster analysis. Results: Root systems varied greatly among cover crop species. Five nutrient acquisition strategies were delineated. Significant amounts of nutrients (about 120 kg ha−1 of nitrogen, 30 kg ha−1 of phosphorus and 190 kg ha−1 of potassium) were accumulated by the species in a short period. Nutrient acquisition strategies related to high accumulations of nutrients consisted in either high shoot biomass and root mass and dense tissues, or high nutrient concentrations and root length densities. Species with high root length densities showed lower C/N ratios. Conclusions: The same amounts of nutrients were accumulated by groups with different acquisition strategies. However, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement

    Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming

    Get PDF
    The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha−1 yr−1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ∼50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha−1 yr−1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years

    Implications of improved representations of plant respiration in a changing climate

    Get PDF
    Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (R d) and temperature dependencies. This allows characterisation of baseline R d, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates R d to whole-plant respiration R p, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline R d increases R p and especially in the tropics. Compared to new baseline, revised instantaneous response decreases R p for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new R d estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how R d aggregates to whole-plant respiration. Our analysis suggests R p could be around 30% higher than existing estimates.C.H. acknowledges the NERC CEH National Capability fund. We acknowledge the many climate research centres that contributed GCM outputs in to the Coupled Model Intercomparison Project (CMIP5) database. The support of the Australian Research Council to O.K.A. and P.M. (DP130101252, CE140100008, FT0991448, FT110100457) is acknowledged, as are awards DE-FG02-07ER64456 from the US Department of Energy, Office of Science, Office of Biological and Environmental Research and DEB-1234162 from the U.S. National Science Foundation (NSF) Long-Term Ecological Research Program (to P.B.R.); and National Science Foundation International Polar Year Grant (to K.L.G.). L.M.M. acknowledges the support of the Natural Environment Research Council (NERC) South American Biomass Burning Analysis (SAMBBA) project grant code NE/ J010057/1

    Convergence in the temperature response of leaf respiration across biomes and plant functional types

    Get PDF
    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates
    corecore