574 research outputs found
Econobiophysics - game of choosing. Model of selection or election process with diverse accessible information
We propose several models applicable to both selection and election processes when each selecting or electing subject has access to different information about the objects to choose from. We wrote special software to simulate these processes. We consider both the cases when the environment is neutral (natural process) as well as when the environment is involved (controlled process)
Developing a gas rocket performance prediction technique
A simple, semi-empirical performance correlation/prediction technique applicable to gaseous and liquid propellant rocket engines is presented. Excellent correlations were attained for over 100 test firings by adjusting the computation of the gaseous mixing of an unreactive, coaxial jet using a correlation factor, F, which resulted in prediction of the experimental combustion efficiency for each firing. Static pressure, mean velocity and turbulence intensity in the developing region of non-reactive coaxial jets, typical of those of coaxial injector elements were determined. Detailed profiles were obtained at twelve axial locations (extending from the nozzle exit for a distance of five diameters) downstream from a single element of the Bell Aerospace H2/O2 19-element coaxial injector. These data are compared with analytical predictions made using both eddy viscosity and turbulence kinetic energy mixing models and available computer codes. Comparisons were disappointing, demonstrating the necessity of developing improved turbulence models and computational techniques before detailed predictions of practical coaxial free jet flows are attempted
X-rays in the Orion Nebula Cluster: Constraints on the origins of magnetic activity in pre-main sequence stars
A recent Chandra/ACIS observation of the Orion Nebula Cluster detected 1075
sources (Feigelson et al. 2002), providing a uniquely large and well-defined
sample to study the dependence of magnetic activity on bulk properties for
stars descending the Hayashi tracks. The following results are obtained: (1)
X-ray luminosities L_t in the 0.5-8 keV band are strongly correlated with
bolometric luminosity with = -3.8 for stars with masses 0.7<M<2
Mo, an order of magnitude below the main sequence saturation level; (2) the
X-ray emission drops rapidly below this level in some or all stars with 2<M<3
Mo; (3) the presence or absence of infrared circumstellar disks has no apparent
relation to X-ray levels; and (4) X-ray luminosities exhibit a slight rise as
rotational periods increase from 0.4 to 20 days. This last finding stands in
dramatic contrast to the strong anticorrelation between X-rays and period seen
in main sequence stars.
The absence of a strong X-ray/rotation relationship in PMS stars, and
particularly the high X-ray values seen in some very slowly rotating stars, is
a clear indication that the mechanisms of magnetic field generation differ from
those operating in main sequence stars. The most promising possibility is a
turbulent dynamo distributed throughout the deep convection zone, but other
models such as alpha-Omega dynamo with `supersaturation' or relic core fields
are not immediately excluded. The drop in magnetic activity in
intermediate-mass stars may reflect the presence of a significant radiative
core. The evidence does not support X-ray production in large-scale star-disk
magnetic fields.Comment: 51 pages, 8 figures. To appear in the Astrophysical Journa
New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years
We report on a timing of the eclipse arrival times of the low mass X-ray
binary and X-ray pulsar 2A 1822-371 performed using all available observations
of the Proportional Counter Array on board the Rossi X-ray Timing Explorer,
XMM-Newton pn, and Chandra. These observations span the years from 1996 to
2008. Combining these eclipse arrival time measurements with those already
available covering the period from 1977 to 1996, we obtain an orbital solution
valid for more than thirty years. The time delays calculated with respect to a
constant orbital period model show a clear parabolic trend, implying that the
orbital period in this source constantly increases with time at a rate s/s. This is 3 orders of magnitude larger than
what is expected from conservative mass transfer driven by magnetic braking and
gravitational radiation. From the conservation of the angular momentum of the
system we find that to explain the high and positive value of the orbital
period derivative the mass transfer rate must not be less than 3 times the
Eddington limit for a neutron star, suggesting that the mass transfer has to be
partially non-conservative. With the hypothesis that the neutron star accretes
at the Eddington limit we find a consistent solution in which at least 70% of
the transferred mass has to be expelled from the system.Comment: Published by A&
Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing
M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are
significantly shorter than of any other known main-sequence binary system, and
are all significantly below the sharp period cut-off at P~0.22 days as seen in
binaries of earlier type stars. The shortest-period binary consists of two M4
type stars in a P=0.112 day orbit. The binaries are discovered as part of an
extensive search for short-period eclipsing systems in over 260,000 stellar
lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25
binaries with P<0.23 days. In a popular paradigm, the evolution of short period
binaries of cool main-sequence stars is driven by loss of angular momentum
through magnetised winds. In this scheme, the observed P~0.22 day period
cut-off is explained as being due to timescales that are too long for
lower-mass binaries to decay into tighter orbits. Our discovery of low-mass
binaries with significantly shorter orbits implies that either these timescales
have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic
activity, or that the mechanism for forming these tight M-dwarf binaries is
different from that of earlier type main-sequence stars.Comment: 22 pages, 17 figures, 3 tables Accepted for publication in MNRA
ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs
This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed
The Very Short Period M Dwarf Binary SDSS J001641-000925
We present follow-up observations and analysis of the recently discovered
short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital
period of 0.19856 days, this system has one of the shortest known periods for
an M dwarf binary system. Medium-resolution spectroscopy and multi-band
photometry for the system are presented. Markov chain Monte Carlo modeling of
the light curves and radial velocities yields estimated masses for the stars of
M1 = 0.54 +/- 0.07 Msun and M2 = 0.34 +/- 0.04 Msun, and radii of R1 = 0.68 +/-
0.03 Rsun and R2 = 0.58 +/- 0.03 Rsun respectively. This solution places both
components above the critical Roche overfill limit, providing strong evidence
that SDSS J001641-000925 is the first verified M-dwarf contact binary system.
Within the follow-up spectroscopy we find signatures of non-solid body rotation
velocities, which we interpret as evidence for mass transfer or loss within the
system. In addition, our photometry samples the system over 9 years, and we
find strong evidence for period decay at the rate of dP/dt ~8 s/yr. Both of
these signatures raise the intriguing possibility that the system is in
over-contact, and actively losing angular momentum, likely through mass loss.
This places SDSS J001641-000925 as not just the first M-dwarf over-contact
binary, but one of the few systems of any spectral type known to be actively
undergoing coalescence. Further study SDSS J001641-000925 is on-going to verify
the nature of the system, which may prove to be a unique astrophysical
laboratory.Comment: 11 figures, ApJ Accepte
Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study
Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described.
Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF.
Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly.
Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored.
Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar.
Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo
- …