17 research outputs found

    Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots

    Get PDF
    A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices

    A practical approach for monitoring reinforcement corrosion in steel fiber reinforced concrete elements exposed to chloride rich environments

    No full text
    The use of fibers in Reinforced Concrete (RC) elements changes their cracking pattern, leading to narrower and more closely spaced cracks. In addition, the presence of fibers can improve the steel-to-concrete bond behavior reducing the steel-to-concrete interface damage after cracking. Cracks and steel-to-concrete interface damage work like paths, for aggressive agents, to reach the rebar in cracking elements, reducing the initiation period of the corrosion process, and favoring the corrosion at the intersection between cracks and reinforcement. In this context, this article discusses an experimental program on tension ties mechanically cracked and exposed to a chloride-rich environment with the purpose to check and eventually adequate the typical electrochemical measurements, used in the case of RC elements, for Steel Fiber Reinforced Concrete (SFRC). Adjustments related to degradation morphology and interference of steel fibers are proposed and used on Fiber Reinforced Concrete (FRC) elements for monitoring the influence of cracks and fibers on corrosion propagation. Finally, these proposed modifications were checked and validated against the results obtained by monitoring SFRC beams in the cracked stage

    Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.

    Get PDF
    Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using (33) P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance
    corecore