183 research outputs found

    Rule Out (R/O) Intracranial Aneurysm

    Full text link
    When imaging patients for intracranial aneurysm, the goals are: (1) to assess the contour of the intracranial arteries, particularly in he regions of the ACOM (anterior communicating artery), PCOM (posterior communicating artery), ICA (internal carotid artery) bifurcation, MCA (middle cerebral artery) trifurcation, basilar tip, and PICA (posterior inferior cerebellar artery); (2) to assess the anatomy of the Circle of Willis and direction of flow, and; (3) to determine if there is evidence of a recent subarachnoid bleed. This unit describes a that can be used for standard imaging of aneurysm in stable patients. An is described for situations when there is concern for vasospasm and infarction.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145398/1/cpmia0102.pd

    Cerebral Infarct/Intracranial Cerebrovascular Disease

    Full text link
    Imaging goals for intracranial cerebral vascular disease are (1) to assess the degree of parenchymal injury and identify intraparenchymal hemorrhage; (2) to determine if there are areas of altered perfusion that may be at risk for future injury; and (3) to assess the intracranial arteries (patency as well as direction of flow). This unit describes a that can be used to evaluate stable patients with acute, subacute, or chronic cerebrovascular symptoms. An is also given for cases of hyperacute strokes or cerebrovascular symptoms in an unstable patient.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145276/1/cpmia0101.pd

    Synthesis Of Ag@silica Nanoparticles By Assisted Laser Ablation

    Get PDF
    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).10Mexican founding agency CONACyT [CB183728, CB 176705]Instituto Politecnico Nacional [SIP20130216, SIP20141409, SIP 20151327]Brasilian founding agency FACEPEConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Temporal variability is a personalized feature of the human microbiome

    Get PDF
    Background: It is now apparent that the complex microbial communities found on and in the human body vary across individuals. What has largely been missing from previous studies is an understanding of how these communities vary over time within individuals. To the extent to which it has been considered, it is often assumed that temporal variability is negligible for healthy adults. Here we address this gap in understanding by profiling the forehead, gut (fecal), palm, and tongue microbial communities in 85 adults, weekly over 3 months. Results: We found that skin (forehead and palm) varied most in the number of taxa present, whereas gut and tongue communities varied more in the relative abundances of taxa. Within each body habitat, there was a wide range of temporal variability across the study population, with some individuals harboring more variable communities than others. The best predictor of these differences in variability across individuals was microbial diversity; individuals with more diverse gut or tongue communities were more stable in composition than individuals with less diverse communities. Conclusions: Longitudinal sampling of a relatively large number of individuals allowed us to observe high levels of temporal variability in both diversity and community structure in all body habitats studied. These findings suggest that temporal dynamics may need to be considered when attempting to link changes in microbiome structure to changes in health status. Furthermore, our findings show that, not only is the composition of an individual's microbiome highly personalized, but their degree of temporal variability is also a personalized feature

    Depuranat project: sustainable management of wastewater in rural areas

    Get PDF
    The Urban Wastewater Directive is aiming to implement adequate treatments of collected wastewater before 31 December 2005 in small communities with a population until 2000 equivalentinhabitant. Within the framework of the DEPURANAT project, co-financed by the European Interregional Cooperation Programme (Interreg IIIB Atlantic Arc), several Natural Reclamation Systems (NRS) based upon no-conventional technologies of wastewater treatment, have been studied from different points of view in rural areas: their effectiveness for producing regenerated wastewater of acceptable quality for several reuse options and vegetal biomass for different purposes, their environmental integration or their potential of implementation. Most of these treatment plants achieved high mean removal efficiencies: TSS (73–96%); BOD5 (74–94%); COD (53–90%); E. coli (2–3 log units); Enterococci (1.5–4 log units). The environmental impact of the systems was determined using an adapted life cycle assessment methodology and the economic analysis of the systems was focused on analysing the financial indicators, empirical cost functions, and the potential market for these technologies. Furthermore, maps of potential implementation of these systems and a support tool for deciding upon the installation of conventional or NRS were designed with the aim of promoting them.Communitary Interreg III-B Atlantic Area of EuropeDEPURANAT consortiu

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore