13,061 research outputs found

    Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    Full text link
    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-239 (EPIC 248545986), char- acterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R Earth, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-240 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R Earth and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ~10 ppm.Comment: Accepted for publication in MNRAS letter

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A

    Real-time digital signal processor implementation of self-calibrating pulse-shape discriminator for high purity germanium

    Full text link
    Pulse-shape analysis of the ionization signals from germanium gamma-ray spectrometers is a method for obtaining information that can characterize an event beyond just the total energy deposited in the crystal. However, as typically employed, this method is data-intensive requiring the digitization, transfer, and recording of electronic signals from the spectrometer. A hardware realization of a real-time digital signal processor for implementing a parametric pulse shape is presented. Specifically, a previously developed method for distinguishing between single-site and multi-site gamma-ray interactions is demonstrated in an on-line digital signal processor, compared with the original off-line pulse-shape analysis routine, and shown to have no significant difference. Reduction of the amount of the recorded information per event is shown to translate into higher duty-cycle data acquisition rates while retaining the benefits of additional event characterization from pulse-shape analysis.Comment: Accepted by NIM

    Barred-beach morphological control on infragravity motion

    Get PDF
    A conceptual analysis of the coupling between bars and infragravity waves is performed combining laboratory experiments and numerical modeling. Experiments are carried out in a wave flume with a barred profile. The Boussinesq fully-nonlinear model SERR1D is validated with the laboratory data and a sensitivity analysis is performed next to study the influence on the infragravity wave dynamics of bar amplitude and location, and swash zone slope. A novel technique of incident and reflected motions separation that conserves temporal characteristics is applied. We observe that changing bar characteristics induces substantial variations in trapped energy. Interestingly, a modification of swash zone slope has a large influence on the reflected component, controlling amplitude and phase time-lag, and consequently on the resonant pattern. Variations of trapped infragravity energy induced by changes of swash zone slope reach 25 %. These changes in infragravity pattern consequently affect short-wave dynamics by modifying the breakpoint location and the breaking intensity. Our conceptual investigation suggests the existence of a morphological feedback through the action of evolving morphology on infragravity structures which modulates the action of short-waves on the morphology itself

    Association of Systemic Lupus Erythematosus Clinical Features with European Population Genetic Substructure

    Get PDF
    Systemic Lupus Erythematosus (SLE) is an autoimmune disease with a very varied spectrum of clinical manifestations that could be partly determined by genetic factors. We aimed to determine the relationship between prevalence of 11 clinical features and age of disease onset with European population genetic substructure. Data from 1413 patients of European ancestry recruited in nine countries was tested for association with genotypes of top ancestry informative markers. This analysis was done with logistic regression between phenotypes and genotypes or principal components extracted from them. We used a genetic additive model and adjusted for gender and disease duration. Three clinical features showed association with ancestry informative markers: autoantibody production defined as immunologic disorder (P = 6.8×10(-4)), oral ulcers (P = 6.9×10(-4)) and photosensitivity (P = 0.002). Immunologic disorder was associated with genotypes more common in Southern European ancestries, whereas the opposite trend was observed for photosensitivity. Oral ulcers were specifically more common in patients of Spanish and Portuguese self-reported ancestry. These results should be taken into account in future research and suggest new hypotheses and possible underlying mechanisms to be investigated. A first hypothesis linking photosensitivity with variation in skin pigmentation is suggested

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here
    • …
    corecore