238 research outputs found

    Resolving the Stellar Outskirts of M31 and M33

    Full text link
    Many clues about the galaxy assembly process lurk in the faint outer regions of galaxies. The low surface brightnesses of these parts pose a significant challenge for studies of diffuse light, and few robust constraints on galaxy formation models have been derived to date from this technique. Our group has pioneered the use of extremely wide-area star counts to quantitatively address the large-scale structure and stellar content of external galaxies at very faint light levels. We highlight here some results from our imaging and spectroscopic surveys of M31 and M33.Comment: 6 pages, 4 figures. To appear in the proceedings of "Island Universes - Structure and Evolution of Disk Galaxies", editor R.S. de Jong (Springer: Dordrecht

    The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE

    Get PDF
    We study the ionization and kinematics of the ionized gas in the nuclear region of the barred Seyfert 2 galaxy NGC~5643 using MUSE integral field observations in the framework of the MAGNUM (Measuring Active Galactic Nuclei Under MUSE Microscope) survey. The data were used to identify regions with different ionization conditions and to map the gas density and the dust extinction. We find evidence for a double sided ionization cone, possibly collimated by a dusty structure surrounding the nucleus. At the center of the ionization cone, outflowing ionized gas is revealed as a blueshifted, asymmetric wing of the [OIII] emission line, up to projected velocity v(10)~-450 km/s. The outflow is also seen as a diffuse, low luminosity radio and X-ray jet, with similar extension. The outflowing material points in the direction of two clumps characterized by prominent line emission with spectra typical of HII regions, located at the edge of the dust lane of the bar. We propose that the star formation in the clumps is due to `positive feedback' induced by gas compression by the nuclear outflow, providing the first candidate for outflow induced star formation in a Seyfert-like radio quiet AGN. This suggests that positive feedback may be a relevant mechanism in shaping the black hole-host galaxy coevolution.Comment: 9 pages, 7 figures, accepted for publication in A&

    Resolving the age bimodality of galaxy stellar populations on kpc scales

    Get PDF
    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654,053 sub-galactic regions resolved on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, mu*, are typically older, mu* alone does not determine the stellar population age and a bimodal distribution is found at any fixed mu*. We identify an "old ridge" of regions of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as mu* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte

    INSPIRE: INvestigating stellar population in RElics: II. First data release (DR1)

    Get PDF
    [Context] The INvestigating Stellar Population In RElics (INSPIRE) is an ongoing project targeting 52 ultra-compact massive galaxies at 0.1 2) through a short and intense star formation burst, and then have evolved passively and undisturbed until the present day. Relics provide a unique opportunity to study the mechanisms of star formation at high-z. [Aims] INSPIRE is designed to spectroscopically confirm and fully characterise a large sample of relics, computing their number density in the redshift window 0.1 < z < 0.5 for the first time, thus providing a benchmark for cosmological galaxy formation simulations. In this paper, we present the INSPIRE Data Release (DR1), comprising 19 systems with observations completed in 2020. [Methods] We use the methods already presented in the INSPIRE Pilot, but revisiting the 1D spectral extraction. For the 19 systems studied here, we obtain an estimate of the stellar velocity dispersion, fitting the two XSH arms (UVB and VIS) separately at their original spectral resolution to two spectra extracted in different ways. We estimate [Mg/Fe] abundances via line-index strength and mass-weighted integrated stellar ages and metallicities with full spectral fitting on the combined (UVB+VIS) spectrum. [Results] For each system, different estimates of the velocity dispersion always agree within the errors. Spectroscopic ages are very old for 13/19 galaxies, in agreement with the photometric ones, and metallicities are almost always (18/19) super-solar, confirming the mass-metallicity relation. The [Mg/Fe] ratio is also larger than solar for the great majority of the galaxies, as expected. We find that ten objects formed more than 75% of their stellar mass (M∗) within 3 Gyr from the big bang and classify them as relics. Among these, we identify four galaxies that had already fully assembled their M∗ by that time and are therefore 'extreme relics' of the ancient Universe. Interestingly, relics, overall, have a larger [Mg/Fe] and a more metal-rich stellar population. They also have larger integrated velocity dispersion values compared to non-relics (both ultra-compact and normal-size) of similar stellar mass. [Conclusions ]The INSPIRE DR1 catalogue of ten known relics is the largest publicly available collection, augmenting the total number of confirmed relics by a factor of 3.3, and also enlarging the redshift window. The resulting lower limit for the number density of relics at 0.17 < z < 0.39 is ρ ∌ 9.1 × 10-8 Mpc-3.CS is supported by an ‘Hintze Fellow’ at the Oxford Centre for Astrophysical Surveys, which is funded through generous support from the Hintze Family Charitable Foundation. CS, CT, FLB, AG, and SZ acknowledge funding from the INAF PRIN-INAF 2020 program 1.05.01.85.11. AFM has received financial support through the Postdoctoral Junior Leader Fellowship Programme from ‘La Caixa’ Banking Foundation (LCF/BQ/LI18/11630007). GD acknowledges support from CONICYT project Basal AFB-170002. DS is a member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne

    INSPIRE: INvestigating Stellar Population In RElics -- I. Survey presentation and pilot program

    Full text link
    Massive ETGs are thought to form through a two-phase process. At early times, an intense and fast starburst forms blue and disk-dominated galaxies. After quenching, the remaining structures become red, compact and massive, i.e., 'red nuggets'. Then, a time-extended second phase which is dominated by mergers, causes structural evolution and size growth. Given the stochastic nature of mergers, a small fraction of red nuggets survives, without any interaction, massive and compact until today: relic galaxies. Since this fraction depends on the processes dominating the size growth, counting relics at low-z is a valuable way to disentangle between different galaxy evolution models. In this paper, we introduce the INvestigating Stellar Population In RElics (INSPIRE) Project, that aims at spectroscopically confirming and fully characterizing a large number of relics at 0.1<z<0.5. We focus here on the first results based on a pilot program targeting three systems, representative of the whole sample. For these, we extract 1D optical spectra over an aperture comprising ~30 % of the galaxies light, and obtain line-of-sight integrated stellar velocity and velocity dispersion. We also infer the stellar [α\alpha/Fe] abundance from line-index measurements and mass-weighted age and metallicity from full-spectral fitting with single stellar population models. Two galaxies have large integrated stellar velocity dispersion values, confirming their massive nature. They are populated by stars with super-solar metallicity and [α\alpha/Fe]. Both objects have formed >80 % of their stellar mass within a short (0.5 - 1.0 Gyrs) initial star formation episode occurred only ~1 Gyr after the Big Bang. The third galaxy has a more extended star formation history and a lower velocity dispersion. Thus we confirm two out of three candidates as relics.Comment: 19 pages, 14 figures, accepted for publication in A&

    Does the Degree of Trunk Bending Predict Patient Disability, Motor Impairment, Falls, and Back Pain in Parkinson's Disease?

    Get PDF
    Background: Postural abnormalities in Parkinson's disease (PD) form a spectrum of functional trunk misalignment, ranging from a “typical” parkinsonian stooped posture to progressively greater degrees of spine deviation. Objective: To analyze the association between degree of postural abnormalities and disability and to determine cut-off values of trunk bending associated with limitations in activities of daily living (ADLs), motor impairment, falls, and back pain. Methods: The study population was 283 PD patients with ≄5° of forward trunk bending (FTB), lateral trunk bending (LTB) or forward neck bending (FNB). The degrees were calculated using a wall goniometer (WG) and software-based measurements (SBM). Logistic regression models were used to identify the degree of bending associated with moderate/severe limitation in ADLs (Movement Disorders Society Unified PD Rating Scale [MDS-UPDRS] part II ≄17), moderate/severe motor impairment (MDS-UPDRS part III ≄33), history of falls (≄1), and moderate/severe back pain intensity (numeric rating scale ≄4). The optimal cut-off was identified using receiver operating characteristic (ROC) curves. Results: We found significant associations between modified Hoehn &amp; Yahr stage, disease duration, sex, and limitation in ADLs, motor impairment, back pain intensity, and history of falls. Degree of trunk bending was associated only with motor impairment in LTB (odds ratio [OR] 1.12; 95% confidence interval [CI], 1.03–1.22). ROC curves showed that patients with LTB of 10.5° (SBM, AUC 0.626) may have moderate/severe motor impairment. Conclusions: The severity of trunk misalignment does not fully explain limitation in ADLs, motor impairment, falls, and back pain. Multiple factors possibly related to an aggressive PD phenotype may account for disability in PD patients with FTB, LTB, and FNB
    • 

    corecore