64 research outputs found

    A Single Nucleotide Polymorphism within the Novel Sex-Linked Testis-Specific Retrotransposed PGAM4 Gene Influences Human Male Fertility

    Get PDF
    The development of novel fertilization treatments, including in vitro fertilization and intracytoplasmic injection, has made pregnancy possible regardless of the level of activity of the spermatozoa; however, the etiology of male-factor infertility is poorly understood. Multiple studies, primarily through the use of transgenic animals, have contributed to a list of candidate genes that may affect male infertility in humans. We examined single nucleotide polymorphisms (SNPs) as a cause of male infertility in an analysis of spermatogenesis-specific genes.We carried out the prevalence of SNPs in the coding region of phosphoglycerate mutase 4 (PGAM4) on the X chromosome by the direct sequencing of PCR-amplified DNA from male patients. Using RT-PCR and western blot analyses, we identified that PGAM4 is a functional retrogene that is expressed predominantly in the testes and is associated with male infertility. PGAM4 is expressed in post-meiotic stages, including spermatids and spermatozoa in the testes, and the principal piece of the flagellum and acrosome in ejaculated spermatozoa. A case-control study revealed that 4.5% of infertile patients carry the G75C polymorphism, which causes an amino acid substitution in the encoded protein. Furthermore, an assay for enzymatic activity demonstrated that this polymorphism decreases the enzyme's activity both in vitro and in vivo.These results suggest that PGAM4, an X-linked retrogene, is a fundamental gene in human male reproduction and may escape meiotic sex chromosome inactivation. These findings provide fresh insight into elucidating the mechanisms of male infertility

    A hypomorphic Cbx3 allele causes prenatal growth restriction and perinatal energy homeostasis defects

    Get PDF
    Mammals have three HP1 protein isotypes HP1β (CBX1), HP1γ (CBX3) and HP1α (CBX5) that are encoded by the corresponding genes Cbx1, Cbx3 and Cbx5. Recent work has shown that reduction of CBX3 protein in homozygotes for a hypomorphic allele (Cbx3 hypo) causes a severe postnatal mortality with around 99% of the homozygotes dying before weaning. It is not known what the causes of the postnatal mortality are. Here we show that Cbx3 hypo/hypo conceptuses are significantly reduced in size and the placentas exhibit a haplo-insufficiency. Late gestation Cbx3 hypo/hypo placentas have reduced mRNA transcripts for genes involved in growth regulation, amino acid and glucose transport. Blood vessels within the Cbx3 hypo/hypo placental labyrinth are narrower than wild-type. Newborn Cbx3 hypo/hypo pups are hypoglycemic, the livers are depleted of glycogen reserves and there is almost complete loss of stored lipid in brown adipose tissue (BAT). There is a 10-fold reduction in expression of the BAT-specific Ucp1 gene, whose product is responsible for non-shivering themogenesis. We suggest that it is the small size of the Cbx3 hypo/hypo neonates, a likely consequence of placental growth and transport defects, combined with a possible inability to thermoregulate that causes the severe postnatal mortality

    Biol. Reprod.

    No full text
    Mice of the XO genotype with a paternally derived X chromosome (XpO) have placental hyperplasia in late pregnancy, although in early pregnancy the ectoplacental cone, a placental precursor, is smaller in XpO mice than in their XX sibs. This early size deficiency of the ectoplacental cone is apparently a consequence of Xp imprinting, because XmO embryos (with a maternally derived X chromosome) are unaffected. In the present study we sought to establish whether XpO placental hyperplasia in late pregnancy is also a consequence of Xp imprinting. Placental weight data were first collected from litters that included XpO or XmO fetuses and XX controls. Comparison of XO placentae with XX placentae showed that XpO and XmO placentae are hyperplastic. This finding suggested that the hyperplasia might be an X dosage effect, and this hypothesis was supported by the finding that XY male fetuses from the same crosses also had larger placentae than their XX sibs. Further analysis of a range of sex-chromosome variant genotypes, including XmYSry-negative females and XXSry transgenic males, showed that mouse fetuses with one X chromosome consistently had larger placentae than littermates with two X chromosomes, independent of their gonadal/androgen status

    Identification and characterization of G90, a novel mouse RNA that lacks an extensive open reading frame

    No full text
    We describe the cloning and characterization of the murine G90 gene, identified by subtractive hybridization based on the differential presence of its transcript in large and small intestine. The full-length cDNA and genomic sequences were cloned and found to produce a 1.5kb transcript that is polyadenylated but has no open reading frame larger than 249bp. The G90 gene was mapped to the proximal region of mouse chromosome 6. Expression analysis by Northern blotting showed that G90 is transcribed at very high levels in the small intestine and at lower levels in large intestine, testis and kidney of the mouse. In situ hybridization analysis on sections of small and large intestine and testis showed that G90 transcripts are present only in post-mitotic cells

    Placenta

    No full text

    Preferential expression of the G90 gene in post-mitotic cells during mouse embryonic development.

    No full text
    Contains fulltext : 144234.pdf (publisher's version ) (Closed access
    • …
    corecore