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Abstract Parthenogenetic cells are lost from fetal chi- 
meras. This may be due to decreased proliferative poten- 
tial. To address this question, we have made use of com- 
bined cell lineage and cell proliferation analysis. Thus, 
the incorporation of bromodeoxyuridine in S-phase was 
determined for both parthenogenetic and normal cells in 
several tissues of fetal day 13 and 17 chimeras. A pro- 
nounced reduction of bromodesoxyuridine incorporation 
by parthenogenetic cells at both developmental stages 
was only observed in cartilage. In brain, skeletal muscle, 
heart and intestinal epithelium, this reduction was either 
less pronounced or observed only at one of the develop- 
mental stages analysed. No difference between partheno- 
genetic and normal cells was observed in epidermis and 
ganglia. Our results show that a loss of proliferative po- 
tential of parthenogenetic cells during fetal development 
contributes to their rapid elimination in some tissues. 
The analysis of the fate of parthenogenetic cells in skele- 
tal muscle and cartilage development demonstrated dif- 
ferent selection mechanisms in these tissues. In skeletal 
muscle, parthenogenetic cells were largely excluded 
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from the myogenic lineage proper by early post-midges- 
tation. In primary hyaline cartilage, parthenogenetic cells 
persisted into adulthood but were lost from cartilages 
that undergo ossification during late fetal development. 

Key words Parthenogenesis • Mouse chimeras • 
Proliferation • Differentiation 

Introduction 

The differential behaviour of maternally and paternally 
inherited alleles of imprinted genes is the cause of the le- 
thality of parthenogenetic (pg) and androgenetic (ag) ge- 
notypes during postimplanation mouse development (re- 
viewed by Solter 1988). However, both ag and pg embry- 
os can be rescued for a study of their further develop- 
mental potential by the formation of chimeras with nor- 
mal embryos (reviewed in Fundele and Surani 1994). 
Most studies were carried out on pg <-> fertilized (wt) 
chimeras, as pg embryos can be readily obtained by etha- 
nol activation of ovulated oocytes (Kaufman 1978). 
These studies of chimeras containing a pg-derived cell 
lineage have shown that they exhibit highly specific and 
consistent phenotypes. 

The growth of pg <-> wt chimeras is considerably de- 
layed (Fundele and Surani 1994) and the degree of size 
reduction is positively correlated with the number of pg 
cells present in the chimera (Fundele et al. 1990). Chi- 
meras with a high contribution of pg cells may have only 
50% of the body weight of normal litter mates (Fundele 
et al. 1989, 1990). However, such chimeras do not sur- 
vive prenatal or early postnatal development. Chimeras 
with only a minor pg contribution develop normally, 
apart from their reduced size, and when composed of 
two female cell lineages, are able to produce offspring 
derived from the pg lineage (Stevens 1978; Anderegg 
and Markert 1986; Nagy etal. 1989; Fundele etal. 
1990). Studies of pg <-> wt chimeras have further dem- 
onstrated that pg cells suffer severe negative selection 
during fetal development. The temporal onset of selec- 
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t ion var ies  be tween  dif ferent  t issues and in some t issues  
se lec t ion  m a y  not  occur  at all. There  is ev idence  that  pg 
cel ls  are a l loca ted  r a n d o m l y  to the di f ferent  cel l  l ineages  
of  p re implan ta t ion  pg  <-> wt ch imeras  (Clarke  et al. 
1988; T h o m s o n  and Sol ter  1989). In late  gas t ru la t ion  
stages,  pg  cel ls  occur  ma in ly  in t issues der ived  f rom the 
inner  cell  mass  and are absent  f rom the t rophob las t  
(Clarke  et al. 1988; T h o m s o n  and Sol ter  1988). The  loss 
of  pg  cel ls  f rom the t rophoblas t  is the first  ins tance  o f  the 
se lec t ion  agains t  them. In la ter  s tages  of  deve lopmen t  se- 
lec t ion  agains t  pg cel ls  b e c o m e s  apparen t  in mos t  o ther  
t issues  and is mos t  p ronounced  in skele ta l  muscle ,  pan-  
creas  and l iver  (Funde le  et al. 1990). In newborn  pg <-> 
wt ch imeras ,  pg -de r ived  cel ls  are genera l ly  no longer  ob-  
served  in these  t issues.  

In the presen t  s tudy we  provide ,  for  the first t ime,  in- 
fo rmat ion  on the ce l lu lar  d is t r ibut ion  of  pg  cel ls  in fetal  
ch imeras  and the p ro l i fe ra t ion  rates o f  pg and wt  cel ls  in 
several  t issues of  these  chimeras .  In  addi t ion,  we  can 
show that  the mechan i sms  that  are involved  in the selec-  
t ion aga ins t  pg  cel ls  differ  be tween  t issues.  

Materials and methods 

Animals 

Outbred albino CFLP (originally from Bantin and Kingman stock) 
and NMRI (from the Zentralinstitut ftir Versnchstierzucht, Hanno- 
ver) mice, C57BL/6xCBA hybrids (F1), strain 83 and (gF1×cf83)F 2 
hybrid mice were used. Strain 83 mice are homozygous for a high 
copy transgenic insertion of a plasmid containing a mouse fl-glo- 
bin gene with flanking plasmid pBR322 sequences (Lo 1986). 

Embryos and chimeras 

Superovulation of females, collection, activation and handling of 
eggs and embryos, and embryo aggregation were all carried out 
according to standard procedures previously described (Surani et 
al. 1988). Pg <-> wt chimeras were prepared by asynchronous ag- 
gregations with a pg embryo approximately 16 h more advanced 
than the fertilized embryo. Aggregated embryos were transferred 
into the uterine horns of recipient females on day 3 of pseudopreg- 
nancy. The day of formation of the vaginal plug of the recipient fe- 
male was always counted as the first day of gestation. For identifi- 
cation of chimeric fetuses and adults, tissue processing, and analy- 
sis of transgenic contribution see J~igerbauer et al. (1992). For cell 
proliferation studies, pregnant recipient females were injected int- 
raperitoneally with 50 mg 5-bromo-2'-deoxyuridine (BrdU)/kg 
bodyweight approximately 1 h before sacrifice (Gratzner 1982). 

Histology, immunohistochemistry (IHC) and 
in situ hybridization (ISH) 

Embryos and adult tissues were fixed in Carnoy's solution con- 
taining 60% ethanol, 30% trichlormethane and 10% acetic acid, 
dehydrated and embedded in paraffin. For the detection of ossifi- 
cation a modification of a classic silver staining technique was ap- 
plied (Kossa 1901). The following antibodies (ABs) were obtained 
from Dako Diagnostika, Hamburg: anti-BrdU, anti-fluorescein 
isothiocyanate (FITC) and alkaline phosphatase (AP), and peroxi- 
dase (POD)-conjugated second antibodies directed against mouse 
and rabbit immunoglobulins (Igs). A polyclonal AB directed 
against bovine Type II collagen that reacts with the mouse antigen 
(Sasano et al. 1992) was obtained from Biermann Diagnostica, 
Bad Nauheim and a polyclonal AB raised in rabbit against desmin 

from Eurodiagnostics. Incubations with primary ABs were always 
carried out overnight at 4 ° C, secondary AB reactions for 60 rain 
at room temperature (RT). Dilutions of ABs were in the range sug- 
gested by the suppliers. 

For detection of Type II collagen, conventional indirect IHC 
was applied after hyaluronidase treatment of sections (Sasano et 
al. 1992). Either FITC, AP or POD-conjugated secondary ABs 
were used with hexazotized new fuchsin (NF) or 3,3'-diaminoben- 
zidine (DAB) as chromogenic substrates. 

For the detection of incorporated BrdU, sections were first 
treated with 25-50 gg proteinase K/ml 2xSSC, 0.1% Triton X-100 
for 15-20 rain at 37°C and refixed in 4% formaldehyde, 2.5% 
glutaraldehyde in 2xSSC. After protease treatment and fixation, 
DNA was denatured in 70 mM NaOH for exactly 3 rain. After AB 
reactions, BrdU-positive nuclei were stained using the AP reaction 
with NF as chromogenic substrate. Anti-BrdU IHC was always 
carried out subsequent to in situ hybridization; proteinase K diges- 
tion was omitted when it had been carried out prior to hybridiza- 
tion. DNA denaturation was performed both before hybridization 
and BrdU detection. 

ISH directed against the transgenic insert was carried out es- 
sentially as described previously (J~igerbauer et al. 1992), using 
digoxigenin-labelled pMBGA2 as probe (Lo 1986; Lo et al. 1987). 

For the detection of insulin-like growth factor II IGF2 mRNA, 
a 680 bp Hinfl-Pstl fragment from human IGF-II cDNA was sub- 
cloned into pGEM-3 vector. Transcription with SP6 RNA poly- 
merase from a non linear recombinant plasmid generated the anti- 
sense probe; T7 RNA polymerase generated the sense probe. Both 
probes were labelled with 35S-UTR ISH was carried out as de- 
scribed in Wilkinson and Green (1990). Briefly, sections were 
treated with proteinase K (10 ~tg/ml) and hybridized with the 
probe overnight at 55 ° C. The sections were then subjected to a 
high stringency wash at 55°C for 30 rain. After dehydration, 
slides were coated with Ilford K5 emulsion and exposed at 4 ° C 
for 7 days. Developed slides were stained with haematoxylin and 
mounted in Kirkpatrick and Lendrum's DPX (Distyrene/Dibutyl 
phthalate/Xylene) DPX. 

Selection of tissues and evaluation of in situ hybridization 

Tissues selected for proliferation and/or quantitative analysis were 
epidermis, brain, dorsal root ganglia, cartilage, cardiac muscle, 
smooth muscle, mesenchyme and intestinal epithelium. These tis- 
sues were chosen in part for their suitability for quantitative evalu- 
ation; the nuclear number in dorsal root ganglia, epidermis, carti- 
lage and heart can easily be counted. This may either be due to 
cell size or, in the case of epidermis, to the regular spatial arrange- 
ment of cells. However, brain and gut epithelium were selected for 
analysis even though they are difficult to count. The areas of any 
given tissue that were counted were selected randomly. 

For the quantitation of pg contribution to pg <-> wt chimeras 
and pg and wt proliferation rates, at least 2 different areas from 
each tissue were analysed. For cartilage, between 5 and 24 differ- 
ent areas were analysed due to the small size of the individual car- 
tilages. Pictures of tissues were taken on a Zeiss Axiophot micro- 
scope with Ektachrome EHC 100 film. Slides were projected 
against a screen. Total numbers of nuclei stained with 4,6- 
diamidino-2-phenylindole DAPI and nuclei labelled by ISH and/or 
anti-BrdU IHC were counted manually. The statistical significance 
of the differences between proliferation rates of pg and wt nuclei 
was calculated using the Cochran-Mantel-Haenszel test (Matthews 
and Farewell 1988). 

Results 

Chimeras  

Thi r teen  fetal  ch imeras  with di f ferent  genet ic  back-  
grounds  were  ana lysed  in the presen t  s tudy (Table 1). 
Ch imeras  13.1, 13.2, 14.1, 15.1 and 15.2 were  der ived  
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Table 1 Frequency of transgenic (parthenogenetic) nuclei in tis- 
sues of fetal parthenogenetic <-> fertilized chimeras in percent of 
total cell numbers. For most tissues, more than 1,000 nuclei on 
more than 1 section were counted (maximum number: 8815). Per- 

centage values derived from less than 1000 nuclei are italiazed, 
values derived from less than 300 nuclei are bold (n.d. tissue not 
found or not analysed) 

Day 13.1 13.2 13.3 a 13.4 a 13.5 a 13.6 a 14.1 15.1 15.2 17.1 a 17.2 a 17.3 18.1 

Epidermis n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 21.1 36.6 82.2 13.7 
Brain 16.9 25.1 14.1 27.9 52.9 18.0 27.1 15.0 11.6 18.7 33.2 40.6 15.5 
Ganglia 15.0 15.1 13.3 41.5 54.8 22.8 27.0 17.6 7.6 18.5 27.9 78.1 8.2 
Cartilage 14.4 9.7 10.7 n.d. n.d. n.d. 16.0 8.7 6.7 7.6 11.7 13.5 9.6 
Skeletal muscle 14.9 19.5 6.4 25.4 57.8 12.7 15.8 7.4 1.1 11.9 14.5 26.7 1.4 
Heart 19.5 9.1 9.8 38.7 14.1 9.6 18.4 13.3 4.0 6.0 12.4 24.7 5.3 
Smooth muscle b 17.2 9.4 n.d. n.d. n.d. n.d. 16.3 20.9 5.6 4.2 6.3 18.0 6.3 
Mesenchyme b 4.0 3.3 n.d. n.d. n.d. n.d. 3.1 10.3 1.3 1.9 2.5 7.3 3.4 
Gut epithelium 15.8 16.2 22.7 40.6 34.8 10.6 33.5 22.9 13.9 3.4 12.4 28.9 8.6 

a Only the foster mothers containing these fetuses had been inject- b Only smooth muscle and mesenchyme surrounding the intestinal 
ed with 5-bromo-2'-deoxyuridine (BrdU) before death epithelium were evaluated 

from pg (Fix83) <-> CFLPxCFLP aggregations; chime- 
z o o  

ras 13.3, 13.5, 13.6, 17.1 and 17.2 were o f p g  (F ix83)<-  
> N M R I x N M R I  genotype; chimeras 13.4 and 17.3 were 
made by pg 83 <-> N M R I x N M R I  aggregations; and chi- 
mera 18.1 was o f p g  83 <-> CFLPxCFLP genetic back- i s 0  

ground. In addition, six postnatal chimeras aged between 
21 and 101 days were analysed. Adult chimeras were de- 
rived from pg (Fix83) <-> NMRIxF  1 (Nos. 1711 and 100 
0202), pg (Fix83) <-> CFLPxCFLP (Nos. 215, 216, 
217) and pg83 <-> (NMRIxBALB/c)F1 (No. 1903) ag- 
gregations, s o  

Distribution of pg cells in fetal tissues 

The contribution of pg cells to nine tissues of  fetal chi- 
meras was analysed quantitatively. These tissues were 
epidermis, brain, dorsal root ganglia (of ectodermal ori- 
gin), cartilage (of either ectodermal or paraxial meso- 
derm origin), skeletal muscle (consisting of two cell lin- 
eages of  mesodermal  origin), heart, the smooth muscle 
and mesenchymal  layers of  the gut (all derived from lat- 
eral plate mesoderm),  and the epithelium of the gut (de- 
rived from' the endoderm). The results of  the analysis are 
summarized in Table 1 and Fig. 1. 

As expected f rom the randomness inherent in chime- 
ra formation, the mean pg contribution to the different 
chimeras varied. In most  tissues of  the chimeras analy- 
sed, however, pg-derived cells formed only a minor pro- 
portion of the total cell population. The distribution of 
pg cells to the different tissues was similar between chi- 
meras. In the tissues of  ectodermal origin, comparative- 
ly high levels of  pg cells were regularly observed at all 
developmental  stages, indicating that a significant loss 
of  pg cells from these tissues during fetal development 
does not occur. In the other tissues, pg contribution 
tended to decrease with the advancing gestational age of 
chimeras. 

In skeletal muscle, heart, cartilage, smooth muscle 
and intestinal epithelium of early post-midgestation chi- 
meras, pg contribution reached levels close to the ones 
observed in the brain. However, with increasing age, the 
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Fig. 1 The contribution of parthenogenetic cells to dorsal root 
ganglia (DRG) and skeletal muscle of fetal chimeras is shown. For 
each chimera, values are normalized for parthenogenetic contribu- 
tion determined in the brain (100%). With advancing gestational 
age, the contribution to skeletal muscle decreases when compared 
with the brain. In contrast, parthenogenetic cells survive equally 
well in brain and in the dorsal root ganglia. Symbols represent in- 
dividual chimeras. Day 13: • = 13.1, o = 13.2, o = 13.3, • = 
13.4, n = 13.5, [] = 13.6; Day 14: • = 14.1; Day 15: • = 15.1, ~- 
= 15.2; Day 17: [] = 17.1, • = 17.2, e = 17.3; Day 18: [] = 
18.1. 

levels of  pg contribution in these tissues compared with 
the brain dropped considerably (Fig. 1). When the contri- 
bution of pg cells to different areas of cartilage was anal- 
ysed, no striking differences were observed between me- 
soderm-derived cartilage of trunk and limbs and the ec- 
toderm-derived cranial cartilage. For instance, in chime- 
ra 17.1, 218 pg nuclei were counted in a total of 3392 
nuclei (6.4%) in 10 different areas of  neural crest-de- 
rived cartilage, e.g. the nasal bone (including the anterior 
part of  the septum; see below) and the lower jaw. For 
comparison, in 13 different areas of  sclerotome or lateral 
plate-derived cartilage, including ribs, vertebrae and 
limbs, 402 out of  4803 nuclei (8.3%) carried the trans- 
gene. 



Table 2 BrdU incorporation into nuclei of parthenogenetically 
derived and normal cells in tissues of fetal parthenogenetic <-> 
fertilized aggregation chimeras. Data are presented as percentage 
values of BrdU-labelled nuclei/total number of nuclei for both par- 
thenogenetic and wild-type cells in each tissue. Percentage values 
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derived from more than 1,000 counted nuclei are not marked; val- 
ues derived from less than 1,000 nuclei are italiazed, values de- 
rived from less than 300 nuclei are bold (P probability, pg parthe- 
nogenetic, wt fertilized) 

Day Epidermis Brain DRG Cartilage 

pg wt pg wt pg wt pg wt 

Skeletal muscle Heart Gut epithelium 

pg wt pg wt pg wt 

13.3 n.d. n.d. 27.0 29.8 12.6 9.7 2.3 10.1 19.5 15.5 17.4 18.2 33.7 35.0 
13.4 n.d. n.d. 30.5 35.5 16.7 20.4 n.d. n.d. 7.2 10.9 20.9 25.4 n.d. n.d. 
13.5 n.d. n.d. 25.7 26.0 7.8 11.4 n.d. n.d. 4.5 26.9 14.3 19.2 23.9 29.2 
13.6 n.d. n.d. 26.2 25.6 13.7 12.0 n.d. n.d. 13.5 14.0 16.1 20.7 21.4 30.6 

pa P=0.005 P=0.115 P=0.006 P=0.370 P=0.014 P=0.191 
17.1 33.9 33.6 14.3 13.5 5.7 6.9 8.5 13.4 8.6 16.7 9.3 12.8 37.7 44.9 
17.2 25.5 30.8 13.8 15.0 5.7 6.3 4.3 10.3 7.9 16.8 14.8 15.8 30.4 38.8 
pa P=0.422 P=0.449 P=0.363 P=0.001 P=0.001 P=0.063 P=0.016 

a Statistical analysis was carried out using the Cochran-Mantel-Haenszel test that allowed pooling of proliferation data for a specific tis- 
sue from all chimeras of a given age group 

Pro l i fe ra t ion  o f  pa r thenogene t i c  cel ls  

Six pg <-> wt ch imeras  (13.3, 13.4, 13.5, 13.6, 17.1, 
17.2) were  r emoved  f rom foster  mothers  that had been  in- 
j ec ted  with  BrdU pr ior  to death.  In seven t issues,  the in- 
corpora t ion  of  B rdU into both  normal  and pg-der ived  nu- 
clei  was de te rmined  (Fig. 2L). The results  of  this analys is  
are summar i zed  in Table 2.Three t issues of  ma in ly  ecto-  
dermal  or igin were  evaluated,  ep idermis ,  bra in  and dorsa l  
root  ganglia .  In these t issues,  no consis tent  reduc t ion  in 
BrdU incorpora t ion  into pg nuclei ,  when c o m p a r e d  with 
normal  nuclei ,  was observed.  Ep ide rmis  could  not be 
ana lysed  on day  13 of  gestat ion,  but  in the two day-17 
ch imeras  BrdU incorpora t ion  of  pg and wt  cel ls  was not 
s ignif icant ly  different.  S imi la r  results  were  observed  for  
dorsa l  root  gang l ia  on both days  13 and 17 and for day-17 
brain.  In the bra in  of  the day-13 chimeras ,  however,  the 
measured  di f ferences  in BrdU incorpora t ion  be tween  pg 
and wt  nucle i  were  found  to be significant .  

The  car t i lage  of  the head  is l a rge ly  der ived  f rom the 
neural  crest  and thus is of  ec tode rma l  or ig in  (Morr iss  
and T h o r o g o o d  1978). The  car t i lage  o f  the t runk is a de-  
r ivat ive o f  the somi t ic  sc l e ro tome  and thus is of  pa rax ia l  
m e s o d e r m a l  or igin,  whereas  the l imb car t i lage  is der ived  
f rom the la tera l  p la te  m e s o d e r m  (Chris t  1969). W h e n  
these compl i ca t ions  were  neg lec ted  and all  da ta  were  
pooled ,  pg -de r ived  car t i lage  cel ls  showed  decreased  
BrdU incorpora t ion  when  c o m p a r e d  with  normal  cel ls  at 
both  deve lopmen ta l  stages.  

In skeletal  musc le  of  three day-13 chimeras,  no striking 
difference be tween  pg and wt  prol i fera t ion was observed,  
a l though some variat ion in overal l  prol i fera t ion was found 
to exist  be tween these chimeras.  The except ion was chi- 
mera  13.5 which  exhibi ted  a very low propor t ion  of  prol i f-  
erating pg cells. A t  the same time, the propor t ion  of  prol i f-  
erating wt  cells was much higher  than that observed  in the 
other chimeras.  The differences be tween  pg and wt  prol i f -  
erat ion were  not  s tat is t ical ly s ignif icant  ei ther when 13.5 
was inc luded or exc luded  f rom the calculat ion.  

Fig. 2 A A sagittal section through the cartilage (ca) of the nasal 
septum of chimera 17.3 after DNA in situ hybridization (ISH). In 
the caudal area of this cartilage an almost complete absence of 
parthenogenetic (pg)-derived cells is obvious, but their number in- 
creases strikingly towards the tip of the nose. Numerous hybrid- 
ization signals are also seen in some of the nasal epithelia shown 
(bar 100 gm, arrows see B and C). B, C Larger magnifications of 
two cartilage regions indicated on A by arrows. B The caudal re- 
gion with very little pg contribution; C the rostral region with high 
contribution (bar 25 gm; DNA ISH). D A patch of pg-derived 
cells in the nasal cartilage (ca) of the adult pg <-> wt chimera 
1903 is shown, demonstrating that pg cells are perfectly able to 
form large patches of hyaline cartilage (bar 12.5 Ixm; DNA ISH 
and DAPI nuclear stain). E A small patch of pg cells in the hyaline 
cartilage (ca) of the trachea of chimera 1711 is shown (arrow). 
Positive cells were also observed in the endodermal epithelium 
(epi) of the trachea (arJvwhead; bar 12.5 gin; DNA ISH and 
DAPI nuclear stain). F Skeletal muscle of chimera 13.1 after DNA 
ISH, anti-desmin immunohistochemistry (IHC) and 4,6- 
diamidino-2-phenylindole DAPI nuclear staining is shown. While 
hybridization signals showing the presence of pg cells can be de- 
tected, no cells labelled by both DNA ISH and IHC are observed. 
This indicates that the pg cells present in this muscle blastema 
would have developed into intramuscular connective tissue, as 
myoblasts and myofibres express desmin at this stage (bar 25 
gm). G Desmin-positive muscle fibres of late gestation chimera 
18.1 are shown. Five nuclei carrying a hybridization signal are vis- 
ible in the muscle region, but the cytoplasm surrounding these nu- 
clei is negative for desmin. This proves that these nuclei do not be- 
long to the myogenic lineage (bar 25 gin; AP activity developed 
with new fuchsin - NF-as substrate, hence DNA ISH signals are 
red). H A nucleus labelled by DNA ISH (arrow) and situated in- 
side a myotube can be detected in a muscle of chimera 18.1. This 
shows that pg cells are able to fuse with normal myoblasts to give 
rise to myotubes (bar 5 I.tm; DNA ISH using alkaline phosphatase- 
NF and anti-desmin IHC using peroxidase-diaminobenzidine). I, J 
Consecutive sections stained by DNA ISH/DAPI (I) and HE 
haematoxylin-eosin (J) showing the presence of pg nuclei in skel- 
etal muscle of chimera 1711. The morphology of the positive cell 
patch shows that these cells belong to the intramuscular connec- 
tive tissue (bar 25 gin). K Positive cells situated in skeletal muscle 
of chimera 216 form the wall of a small blood vessel and sur- 
rounding mesenchyme. No nuclei situated inside the myotubes are 
labelled. (bar 12.5 gin; DNA ISH and DAPI nuclear stain). L 
Skeletal muscle of chimera 17.2 labelled by anti-BrdU IHC and 
DNA ISH. While numerous proliferating nuclei and pg nuclei can 
be detected in this section, the two labels rarely overlap (bar 12.5 
~tm) 
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For legend of Fig. 2 A - L  see page 439 
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Table 3 Persistence of parthenogenetic cells in skeletal muscle and gastric epithelium of adult chimeras. Values are given as number of 
labelled nuclei per total number of nuclei (in parentheses percentage values) 

Chimera 215 216 217 1711 0202 

Skeletal muscle 32/2061 20/1619 7/1500 11/1402 16/605 
(1.6%) (1.2%) (0,5%) (0.8%) (2.6%) 

Stomach 35/360 35/308 13/291 44/195 19/276 
epithelium a, b (9.7%) (11.4%) (4.5%) (21.0%) (6.9%) 

a Data from J~gerbauer et al. (1992) 
b Values show numbers of gastric glands that were counted; gastric glands are of monoclonal origin and are ultimately derived from a 
single progenitor cell 

In the intestinal epithelium of three day-13 chimeras, 
no consistent difference between pg and wt proliferation 
was found. In both day-17 chimeras, however, pg cells 
incorporated significantly less BrdU than the neighbour- 
ing wt cells. 

Pg cells in cartilage differentiation 

In the analysis of pg contribution and proliferation in the 
cranial skeleton, a highly reproducible pattern of distribu- 
tion of pg cells in the nasal bone emerged. It was found 
that in all pg <-> wt chimeras from day 13 onwards, pg 
cells tended to be present in much higher numbers in the 
anterior part of the nasal septum than in the posterior part. 
As the anterior part of the nasal bone remains a hyaline 
cartilage throughout the life of the mouse (Scott 1953), 
whereas ossification occurs in the posterior part during 
late fetal development (Fig. 2A, B, C), a causal relation- 
ship to the gradient of pg cell distribution was assumed. 
Also, random distribution of strain 83-derived normal and 
androgenetic cells was consistently observed in wt 83 <-> 
wt, wt 83 -> wt and ag -> wt chimeras (not shown), indi- 
cating that this phenotype is specific for pg <-> wt chime- 
ras. However, the non-random distribution of pg cells was 
visible well before the differentiation of the posterior car- 
tilage was visible by morphological criteria. Accordingly, 
three different markers for cartilage differentiation were 
used, alcian blue staining, immunocytochemistry against 
type II collagen and mRNA ISH for IGF2. In the chimeras 
analysed, no expression gradient correlating with pg cell 
distribution was observed. In addition, no difference in 
collagen type II expression or alcian blue staining between 
pg and wt cells was obvious (not shown). IGF2, a growth 
factor that is encoded by a gene subject to genomic im- 
printing and expressed from the paternally derived allele 
only (DeChiara et al. 1991), exhibited no expression gra- 
dient between the rostral and caudal part of the nasal sep- 
tum in a wt <-> wt chimera (not shown). Contribution of 
pg cells to the primary hyaline cartilage was observed in 
the nasal septum of 1903 (aged 81 days at death; Fig. 2D) 
and the tracheae of 1711, 0202 and 1903 (Fig. 2E). 

Pg cells in skeletal muscle differentiation 

To analyse in more detail the cellular composition of fe- 
tal skeletal muscle and the allocation of pg cells to dif- 

ferent lineages, sections of day 13 pg <-> wt chimeras 
were first subjected to IHC against desmin followed by 
ISH analysis. In muscle blastemas of two day-13 chime- 
ras analysed (13.1 and 13.2, Table 1), desmin-positive 
structures corresponding to postmitotic myoblasts and 
early myotubes could easily be identified (Fig. 2F). An 
analysis of several muscle blastemas from both chimeras 
showed that desmin-positivity and presence of a hybrid- 
ization signal coincided only rarely, e.g. most pg nuclei 
present in day-13 muscle were not associated with differ- 
entiated myoblasts or myotubes. In the muscle blastema 
shown in Fig. 1F no nucleus associated with a desmin- 
positive structure exhibited a hybridization signal. A 
combined IHC and ISH analysis of two different skeletal 
muscle areas of the day-18 pg <-> wt chimera provided 
similar results. Here, only 1 out of 32 (3.1%) and 7 out 
of 62 (11.3%) nuclei which showed a hybridization sig- 
nal were situated inside myotubes (Fig. 2G, H) and could 
thus be allocated to the myogenic lineage. The non-myo- 
genic pg cells present in skeletal muscle of this chimera 
were found to belong to different cellular lineages, e.g. 
connective tissue and Schwann cells could be positively 
identified. Similar results were found in the other fetal 
pg <-> wt chimeras. In skeletal muscle of five adult chi- 
meras that were analysed (Table 3), the majority of pg 
nuclei were found to belong to cells that could be unam- 
biguously allocated to the intramuscular connective tis- 
sue and to small blood vessels (Fig. 2I, J, K). No nucleus 
could be allocated with any certainty to the muscle lin- 
eage proper. 

Discussions 

Previous studies have shown that chimeras carrying a pg- 
derived cell lineage are viable (Fundele and Surani 1994) 
and that in such chimeras pg-derived cells may persist in 
numerous different tissues (Fundele et al. 1989, 1990; 
Nagy et al. 1989). However, the contribution of pg cells 
to most tissues is usually very low, although in gastrula- 
tion stage chimeras pg cells may be present in large 
numbers (Clarke et al. 1988; Thomson and Solter 1988). 
It has also been shown that selection against pg cells is 
strongly tissue specific (Fundele et al. 1989, 1990; Nagy 
et al. 1989). In general, in analysed tissues of ectodermal 
origin, e.g. brain and epidermis, pg-derived cells survive 
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well into postnatal life. In other tissues, e.g. skeletal 
muscle, liver and pancreas, pg cells are subject to a strin- 
gent selection. It was therefore suggested that, in some 
tissues, pg cells may undergo a slowing down or even a 
cessation of cell proliferation after post-midgestation de- 
velopment (Surani et al. 1990a, b; Fundele et al. 1990). 
To test this hypothesis, we have analysed the distribution 
and proliferation of pg-derived cells in fetal aggregation 
chimeras using in situ detectable cell lineage (Lo 1986; 
Lo et al. 1987) and cell proliferation markers (Gratzner 
1982). The feasibility of this approach has been demon- 
strated previously (J~igerbauer et al. 1992). 

No systematic analysis of wt <-> wt control chimeras 
was performed for the present study. However, we and 
others (Nagy et al. 1989) have shown that the selective 
loss of pg cells is exclusive to the pg genotype. For wt83 
<-> wt CFLP, wt (83xF1) <-> wt CFLP chimeras (analy- 
sed by ISH; J~gerbauer et al. 1992; Fundele, unpub- 
lished) and wt FlXF ~ <-> CFLP chimeras (analysed by 
GPI-1 electrophoresis; Fundele et al. 1989, 1990) no in- 
dication of specific selection or allocation was ever ob- 
served at any developmental stage. The different strain 
combinations used in the present study for the produc- 
tion of the pg <-> wt chimeras minimize the unlikely 
possibility that specific phenotypes are caused by strain 
background. In any case, a previous study has shown that 
the use of different mouse strains in the production of pg 
<-> wt or pg -> wt chimeras does not significantly 
change the fate of the pg cells (Fundele et al. 1991). 

The results of quantitative analysis using the 83 trans- 
gene marker are in good agreement with previously pub- 
lished results obtained using the GPI-1 allozyme marker 
(Fundele et al. 1989, 1990, 1991; Nagy et al. 1989). Spe- 
cifically, the best survival of pg cells during prenatal de- 
velopment was observed in the tissues of ectodermal ori- 
gin, e.g. brain, dorsal root ganglia and epidermis. On the 
other hand, loss of pg cells from skeletal muscle was 
slower and less drastic than observed in a previous study 
(Fundele et al. 1990). At present we cannot explain this 
difference. It is, however, possible that different strain 
combinations may influence the behaviour of pg cells to 
some excent, as shown before (Fundele et al. 1991). In 
any case, the almost complete absence of pg-derived nu- 
clei from adult skeletal muscle fibres was observed in all 
studies performed (Fundele etal. 1989, 1990, 1991; 
Nagy et al. 1989), including this one. 

As expected from the good survival of pg cells in all 
tissues of ectodermal origin (except cranial cartilage), 
the proliferation of pg cells, as assessed by incorporation 
and immunohistochemical detection of BrdU, appears to 
be normal. A significantly decreased proliferation was 
found only in the brains of the day-13 chimeras. As 
BrdU labelling of pg cells was normal when compared 
with wt cells on day 17 of gestation, we assume that the 
day 13 finding does not reflect a real transient loss of pg 
neuroblast proliferation in early post-midgestation devel- 
opment. 

When pg and wt proliferation in the intestinal epithe- 
lium were compared, a significant decrease with advanc- 

ing gestational age was observed. This decrease was as- 
sociated with a highly significant drop in BrdU incorpo- 
ration of pg cells between day 13 and 17 of gestation. 
The results of the proliferation analysisin pg <-> wt chi- 
meras seem to contradict previous findings that pg-de- 
rived stem cells are able to support normal gut morpho- 
genesis during early postnatal life (JSgerbauer et al. 
1992). It is, however, possible that this apparent discrep- 
ancy may be explained by the profound morphological 
changes that take place in the gut during perinatal devel- 
opment (Mathan et al. 1976). Among these changes are 
the transition from a stratified to a single-layer epitheli- 
um, the formation of folds and villi in the small intestine, 
the development of the crypts, and the spatial restriction 
of proliferating stem cells to the crypts (Mathan et al. 
1976). It is feasible that pg cells that survive prenatal se- 
lection are no longer handicapped and can participate in 
the establishment of the adult pattern. However, there are 
indications that at least in some parts of the gut, pg cells 
are not able to sustain the normal cell proliferation and 
migration pattern (J~igerbauer et al. 1992). 

The most impressive differences between pg and wt 
proliferation were observed in cartilage and skeletal 
muscle of the day 17 chimeras. Considering the well es- 
tablished fact that very few pg cells persist in adult skel- 
etal muscle, the latter finding seems plausible. While the 
loss of pg cells from the skeletal muscle of chimeras 
seems to follow the pattern observed in other tissues, it is 
important to note that skeletal muscle is a composite tis- 
sue. In fact, the majority of nuclei present in an adult 
skeletal muscle do not belong to the myogenic lineage 
proper and a careful analysis of serial sections has shown 
that non-muscle cells may contribute up to 80% of the 
nuclei (Christ, unpublished). In addition, we have ob- 
served that by day 13 of gestation the majority of pg 
cells present in muscle blastemas do not belong to the 
myogenic lineage. Together, these observations indicate 
that the proliferating pg cells seen in skeletal muscle of 
day-17 chimeras were mesenchymal and that loss of pro- 
liferative potential causes the demise of pg cells mostly 
from the intramuscular connective tissue. As we have 
shown in a previous study that pg cells contribute nor- 
mally to the myotome of day- 11 fetal chimeras (Fundele 
et al. 1994), it seems likely that the main loss of pg-de- 
rived cells from the myogenic lineage occurs between 
days 11 and 13. 

While a striking loss of proliferative potential was ob- 
served in fetal cartilage, pg cells were found to persist in 
the primary hyaline cartilage of adult chimeras. This ap- 
parent discrepancy is probably explained by the different 
behaviour of pg cells in anterior and posterior parts of 
the nasal septum. Here, pg cells survive in the rostral 
part that will remain a primary hyaline cartilage but not 
in the caudal part that will develop into bone. This sug- 
gests that factors involved specifically in ossification 
might be aberrantly expressed in pg cells. 

In summary, our results show that loss of proliferative 
capacity is at least one cause for the loss of pg cells from 
those tissues where selection takes place. In this, pg cells 
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show a strikingly different behaviour from ag cells which 
exhibit increased proliferation in ag -> wt chimeras 
(Fundele, Li, Barton, Christ, Krause and Surani, unpub- 
lished). The mechanisms causing the decreased prolifer- 
ation of pg cells are at present unknown. It is suggestive 
that in most of the tissues where pg cells do not persist, 
e.g. cartilage, skeletal muscle and liver (Fundele et al. 
1989, 1990; Nagy et al. t989), Igf2 is expressed at high 
levels. As only the paternally derived Igf2 allele is active 
during normal development (DeChiara et al. 1991), it 
can be assumed that pg cells do not possess IGF2. In ad- 
dition, pg cells probably overexpress Igf2r which maps 
to chromosome 17 and is expressed only from the mater- 
nal allele (Barlow et al. 1991). As absence of IGF2 alone 
does not cause a pronounced selective disadvantage in 
chimeras (Ferguson-Smith et al. 1991), it can be sur- 
mised that lack of Igf2 expression and overexpression of 
Igf2r combined are among the causes for the selective 
disadvantage of pg cell in some tissues. However, other 
known and unknown imprinted genes certainly play im- 
portant roles in defining the developmental capacities of 
pg and ag cells. 
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