454 research outputs found

    A single synonymous mutation determines the phosphorylation and stability of the nascent protein

    Get PDF
    p53 is an intrinsically disordered protein with a large number of post-translational modifications and interacting partners. The hierarchical order and subcellular location of these events are still poorly understood. The activation of p53 during the DNA damage response (DDR) requires a switch in the activity of the E3 ubiquitin ligase MDM2 from a negative to a positive regulator of p53. This is mediated by the ATM kinase that regulates the binding of MDM2 to the p53 mRNA facilitating an increase in p53 synthesis. Here we show that the binding of MDM2 to the p53 mRNA brings ATM to the p53 polysome where it phosphorylates the nascent p53 at serine 15 and prevents MDM2-mediated degradation of p53. A single synonymous mutation in p53 codon 22 (L22L) prevents the phosphorylation of the nascent p53 protein and the stabilization of p53 following genotoxic stress. The ATM trafficking from the nucleus to the p53 polysome is mediated by MDM2, which requires its interaction with the ribosomal proteins RPL5 and RPL11. These results show how the ATM kinase phosphorylates the p53 protein while it is being synthesized and offer a novel mechanism whereby a single synonymous mutation controls the stability and activity of the encoded protein

    Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula

    Get PDF
    SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes have been demonstrated to play a role in somatic embryogenesis in several plant species. As more is learnt about these genes, the view of their role in plant development has broadened. The Medicago truncatula MtSERK1 gene has been associated with somatic embryogenesis and in vitro root formation. In order to study the role of MtSERK1 in development further, the MtSERK1 promoter sequence has been isolated and cloned into a promoter–GUS analysis vector. SERK1 promoter-driven GUS expression was studied in A. tumefaciens-transformed cultures and regenerated plants, in A. rhizogenes-transformed root clones, and in nodulation. In embryogenic cultures, GUS staining is detected after 2 d of culture at the edge of the explant and around vascular tissue. Expression at the explant edge intensifies over subsequent days and then is lost from the edge as callus formation moves inward. MtSERK1 expression appears to be associated with new callus formation. When somatic embryos form, GUS staining occurs throughout embryo development. Zygotic embryos show expression until the heart stage. The in planta studies reveal a number of interesting expression patterns. There appear to be three types. (i) Expression associated with the primary meristems of the root and shoot and the newly formed meristems of the lateral roots and nodule. (ii) Expression at the junction between one type of tissue or organ and another. (iii) Expression associated with the vascular tissue procambial cells. The data led us to conclude that MtSERK1 expression is associated with developmental change, possibly reflecting cellular reprogramming

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    The immunopeptidome from a genomic perspective:Establishing the noncanonical landscape of MHC class I–associated peptides

    Get PDF
    G.B., D.B., K.W., A.P., R.F., T.R.H., S.K., and J.A.A. received support from Fundacja na rzecz Nauki Polskiej (FNP) (grant ID: MAB/3/2017). D.R.G. received support from Genome Canada & Genome BC (grant ID: 264PRO). D.J.H. received support from NuCana plc (grant ID: SMD0-ZIUN05). H.A. received support from Swedish Cancer Foundation (grant ID: 211709). H.G. received support from United Kingdom Research and Innovation (UKRI) (grant ID: EP/S02431X/1). C.P. received support from Fundação para a Ciência e a Tecnologia (FCT) through LASIGE Research Unit (grant ID: UIDB/00408/2020 and UIDP/00408/2020). A.L. F.M.Z., C.P., A.R., A.P., and J.A.A. received support from European Union’s Horizon 2020 research and innovation programme (grant ID: 101017453). C.B. received support from Agence Nationale de la Recherche (ANR) through GRAL LabEX (grant ID: ANR-10-LABX-49-01) and CBH-EUR-GS 32 (grant ID: ANR-17-EURE0003). S.N.S. received support from Cancer Research UK (CRUK) and the Chief Scientist's Office of Scotland (CSO): Experimental Cancer Medicine Centre (ECMC) (grant ID: ECMCQQR-2022/100017). A.L. received support from Chief Scientist's Office of Scotland (CSO) NRS Career Researcher Fellowship. R.O.N. received support from CRUK Cambridge Centre Thoracic Cancer Programme (grant ID: CTRQQR-2021\100012).Tumor antigens can emerge through multiple mechanisms, including translation of non-coding genomic regions. This non-canonical category of antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry to enable the discovery of non-canonical MHC-associated peptides (ncMAPs) from non-coding regions. Considering that the emergence of tumor antigens can also involve post-translational modifications, we included an open search component in our pipeline. Leveraging the wealth of mass spectrometry-based immunopeptidomics, we analyzed 26 MHC class I immunopeptidomic studies of 9 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant post-translational modifications, using spectral matching and controlled their false discovery rate (FDR) to 1%. Interestingly, the non-canonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 54.85%. Here, we reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targeting agents for T-cell therapies or vaccine development.Publisher PDFPeer reviewe

    Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation

    Get PDF
    Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general

    Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules

    Get PDF
    Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces
    corecore