13,919 research outputs found

    Anisotropic Flow and Viscous Hydrodynamics

    Full text link
    We report part of our recent work on viscous hydrodynamics with consistent phase space distribution f(x,\p) for freeze out. We develop the gradient expansion formalism based on kinetic theory, and with the constraints from the comparison between hydrodynamics and kinetic theory, viscous corrections to f(x,\p) can be consistently determined order by order. Then with the obtained f(x,\p), second order viscous hydrodynamical calculations are carried out for elliptic flow v2v_2.Comment: 8 pages, 2 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Relativistic Nucleus-Nucleus Collisions: Zone of Reactions and Space-Time Structure of a Fireball

    Full text link
    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.Comment: 6 pages, 5 figure

    Dissipative effects from transport and viscous hydrodynamics

    Full text link
    We compare 2->2 covariant transport theory and causal Israel-Stewart hydrodynamics in 2+1D longitudinally boost invariant geometry with RHIC-like initial conditions and a conformal e = 3p equation of state. The pressure evolution in the center of the collision zone and the final differential elliptic flow v2(pT) from the two theories agree remarkably well for a small shear viscosity to entropy density ratio eta/s ~ 1/(4 pi), and also for a large cross section sigma ~ 50 mb. A key to this agreement is keeping ALL terms in the Israel-Stewart equations of motion. Our results indicate promising prospects for the applicability of Israel-Stewart dissipative hydrodynamics at RHIC, provided the shear viscosity of hot and dense quark-gluon matter is indeed very small for the relevant temperatures T ~ 200-500 MeV.Comment: Presentation at Quark Matter 2008. 4 pages, 3 figure

    Scattering Theory of Charge-Current Induced Magnetization Dynamics

    Full text link
    In ferromagnets, charge currents can excite magnons via the spin-orbit coupling. We develop a novel and general scattering theory of charge current induced macrospin magnetization torques in normal metal|ferromagnet|normal metal layers. We apply the formalism to a dirty GaAs|(Ga,Mn)As|GaAs system. By computing the charge current induced magnetization torques and solving the Landau-Lifshitz-Gilbert equation, we find magnetization switching for current densities as low as 5×106 5\times 10^{6}~A/cm2^2. Our results are in agreement with a recent experimental observation of charge-current induced magnetization switching in (Ga,Mn)As.Comment: Final version accepted by EP

    Relativistic viscoelastic fluid mechanics

    Get PDF
    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.Comment: 52pages, 11figures; v2: minor corrections; v3: minor corrections, to appear in Physical Review E; v4: minor change

    Kinematics of the ultracompact helium accretor AM canum venaticorum

    Get PDF
    We report on the results from a five-night campaign of high-speed spectroscopy of the 17-min binary AM Canum Venaticorum (AM CVn), obtained with the 4.2-m William Herschel Telescope on La Palma. We detect a kinematic feature that appears to be entirely analogous to the 'central spike' known from the long-period, emission-line AM CVn stars GP Com, V396 Hya and SDSS J124058.03-015919.2, which has been attributed to the accreting white dwarf. Assuming that the feature indeed represents the projected velocity amplitude and phase of the accreting white dwarf, we derive a mass ratio q = 0.18 +/- 0.01 for AM CVn. This is significantly higher than the value found in previous, less direct measurements. We discuss the implications for AM CVn's evolutionary history and show that a helium star progenitor scenario is strongly favoured. We further discuss the implications for the interpretation of AM CVn's superhump behaviour, and for the detectability of its gravitational-wave signal with the Laser Interferometer Space Antenna (LISA). In addition, we demonstrate a method for measuring the circularity or eccentricity of AM CVn's accretion disc, using stroboscopic Doppler tomography. We test the predictions of an eccentric, precessing disc that are based on AM CVn's observed superhump behaviour. We limit the effective eccentricity in the outermost part of the disc, where the resonances that drive the eccentricity are thought to occur, to e = 0.04 +/- 0.01, which is smaller than previous models indicated

    Momentum of an electromagnetic wave in dielectric media

    Get PDF
    Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0 from Eq.(44

    Onsager approach to 1D solidification problem and its relation to phase field description

    Full text link
    We give a general phenomenological description of the steady state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two component alloys is controlled by the diffusion in the bulk and the interface kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior of velocity versus concentration which has previously been discussed by different approaches. We also discuss the relation of this Onsager approach to the thin interface limit of the phase field description.Comment: 5 pages, 1 figure, submitted to Physical Review

    On the orbital periods of the AM CVn stars HP Librae and V803 Centauri

    Get PDF
    We analyse high-time-resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile. We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed `S-wave' in the binary's spectrogram. We measure a spectroscopic period P=1596.4+/-1.2s of the S-wave feature, which is significantly shorter than the 1611-second periods found in previous photometric studies. We conclude that the latter period likely represents a `superhump'. If one assumes that our S-wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at q~0.07 rather than q~0.016. This relaxes the constraints on the masses of the components considerably: the donor star does then not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit. For HP Lib, we similarly measure a spectroscopic period P=1102.8+/-0.2s. This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.Comment: Accepted for publication in MNRA
    corecore