In 2+1 dimension, we have simulated the hydrodynamic evolution of QGP fluid
with dissipation due to shear viscosity. Comparison of evolution of ideal and
viscous fluid, both initialised under the same conditions e.g. same
equilibration time, energy density and velocity profile, reveal that the
dissipative fluid evolves slowly, cooling at a slower rate. Cooling get still
slower for higher viscosity. The fluid velocities on the otherhand evolve
faster in a dissipative fluid than in an ideal fluid. The transverse expansion
is also enhanced in dissipative evolution. For the same decoupling temperature,
freeze-out surface for a dissipative fluid is more extended than an ideal
fluid. Dissipation produces entropy as a result of which particle production is
increased. Particle production is increased due to (i) extension of the
freeze-out surface and (ii) change of the equilibrium distribution function to
a non-equilibrium one, the last effect being prominent at large transverse
momentum. Compared to ideal fluid, transverse momentum distribution of pion
production is considerably enhanced. Enhancement is more at high pT than at
low pT. Pion production also increases with viscosity, larger the viscosity,
more is the pion production. Dissipation also modifies the elliptic flow.
Elliptic flow is reduced in viscous dynamics. Also, contrary to ideal dynamics
where elliptic flow continues to increase with transverse momentum, in viscous
dynamics, elliptic flow tends to saturate at large transverse momentum. The
analysis suggest that initial conditions of the hot, dense matter produced in
Au+Au collisions at RHIC, as extracted from ideal fluid analysis can be changed
significantly if the QGP fluid is viscous.Comment: 11 pages, 10 figures (revised). In the revised version, calculations
are redone with ADS/CFT and perurbative estimate of viscosity. Comments on
the unphysical effects like early reheating of the fluid, in 1st order
dissipative theories are added. The particle spectra calculations are redone
with modified programm