1,329 research outputs found
The envelope of the power spectra of over a thousand \delta Scuti stars. The - scaling relation
CoRoT and Kepler high-precision photometric data allowed the detection and
characterization of the oscillation parameters in stars other than the Sun.
Moreover, thanks to the scaling relations, it is possible to estimate masses
and radii for thousands of solar-type oscillating stars. Recently, a \Delta\nu
- \rho relation has been found for \delta Scuti stars. Now, analyzing several
hundreds of this kind of stars observed with CoRoT and Kepler, we present an
empiric relation between their frequency at maximum power of their oscillation
spectra and their effective temperature. Such a relation can be explained with
the help of the \kappa-mechanism and the observed dispersion of the residuals
is compatible with they being caused by the gravity-darkening effect
Quasi-particle creation by analogue black holes
We discuss the issue of quasi-particle production by ``analogue black holes''
with particular attention to the possibility of reproducing Hawking radiation
in a laboratory. By constructing simple geometric acoustic models, we obtain a
somewhat unexpected result: We show that in order to obtain a stationary and
Planckian emission of quasi-particles, it is not necessary to create an
ergoregion in the acoustic spacetime (corresponding to a supersonic regime in
the flow). It is sufficient to set up a dynamically changing flow either
eventually generating an arbitrarily small sonic region v=c, but without any
ergoregion, or even just asymptotically, in laboratory time, approaching a
sonic regime with sufficient rapidity.Comment: 30 pages, 16 figure
Modelling gravity on a hyper-cubic lattice
We present an elegant and simple dynamical model of symmetric, non-degenerate
(n x n) matrices of fixed signature defined on a n-dimensional hyper-cubic
lattice with nearest-neighbor interactions. We show how this model is related
to General Relativity, and discuss multiple ways in which it can be useful for
studying gravity, both classical and quantum. In particular, we show that the
dynamics of the model when all matrices are close to the identity corresponds
exactly to a finite-difference discretization of weak-field gravity in harmonic
gauge. We also show that the action which defines the full dynamics of the
model corresponds to the Einstein-Hilbert action to leading order in the
lattice spacing, and use this observation to define a lattice analogue of the
Ricci scalar and Einstein tensor. Finally, we perform a mean-field analysis of
the statistical mechanics of this model.Comment: 5 page
Evidence of amplitude modulation due to Resonant Mode Coupling in the delta Scuti star KIC5892969
A study of the star KIC5892969 observed by the Kepler satellite is presented.
Its three highest amplitude modes present a strong amplitude modulation. The
aim of this work is to investigate amplitude variations in this star and their
possible cause. Using the 4 years-long observations available, we obtained the
frequency content of the full light curve. Then, we studied the amplitude and
phase variations with time using shorter time stamps. The results obtained are
compared with the predicted ones for resonant mode coupling of an unstable mode
with lower frequency stable modes. Our conclusion is that resonant mode
coupling is consistent as an amplitude limitation mechanism in several modes of
KIC5892969 and we discuss to which extent it might play an important role for
other delta Scuti stars
Sensitivity of Hawking radiation to superluminal dispersion relations
We analyze the Hawking radiation process due to collapsing configurations in
the presence of superluminal modifications of the dispersion relation. With
such superluminal dispersion relations, the horizon effectively becomes a
frequency-dependent concept. In particular, at every moment of the collapse,
there is a critical frequency above which no horizon is experienced. We show
that, as a consequence, the late-time radiation suffers strong modifications,
both quantitative and qualitative, compared to the standard Hawking picture.
Concretely, we show that the radiation spectrum becomes dependent on the
measuring time, on the surface gravities associated with different frequencies,
and on the critical frequency. Even if the critical frequency is well above the
Planck scale, important modifications still show up.Comment: 14 pages, 7 figures. Extensive paragraph added in conclusions to
clarify obtained result
Evidence of chaotic modes in the analysis of four delta Scuti stars
Since CoRoT observations unveiled the very low amplitude modes that form a
flat plateau in the power spectrum structure of delta Scuti stars, the nature
of this phenomenon, including the possibility of spurious signals due to the
light curve analysis, has been a matter of long-standing scientific debate. We
contribute to this debate by finding the structural parameters of a sample of
four delta Scuti stars, CID 546, CID 3619, CID 8669, and KIC 5892969, and
looking for a possible relation between these stars' structural parameters and
their power spectrum structure. For the purposes of characterization, we
developed a method of studying and analysing the power spectrum with high
precision and have applied it to both CoRoT and Kepler light curves. We obtain
the best estimates to date of these stars' structural parameters. Moreover, we
observe that the power spectrum structure depends on the inclination,
oblateness, and convective efficiency of each star. Our results suggest that
the power spectrum structure is real and is possibly formed by 2-period island
modes and chaotic modes
- …