We analyze the Hawking radiation process due to collapsing configurations in
the presence of superluminal modifications of the dispersion relation. With
such superluminal dispersion relations, the horizon effectively becomes a
frequency-dependent concept. In particular, at every moment of the collapse,
there is a critical frequency above which no horizon is experienced. We show
that, as a consequence, the late-time radiation suffers strong modifications,
both quantitative and qualitative, compared to the standard Hawking picture.
Concretely, we show that the radiation spectrum becomes dependent on the
measuring time, on the surface gravities associated with different frequencies,
and on the critical frequency. Even if the critical frequency is well above the
Planck scale, important modifications still show up.Comment: 14 pages, 7 figures. Extensive paragraph added in conclusions to
clarify obtained result