12 research outputs found

    Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter

    Get PDF
    Along with some research networking programmes, the European Directive 2008/50/CE requires chemical speciation of fine aerosol (PM<sub>2.5</sub>), including elemental (EC) and organic carbon (OC), at a few rural sites in European countries. Meanwhile, the thermal-optical technique is considered by the European and US networking agencies and normalisation bodies as a reference method to quantify EC–OC collected on filters. Although commonly used for many years, this technique still suffers from a lack of information on the comparability of the different analytical protocols (temperature protocols, type of optical correction) currently applied in the laboratories. To better evaluate the EC–OC data set quality and related uncertainties, the French National Reference Laboratory for Ambient Air Quality Monitoring (LCSQA) organised an EC–OC comparison exercise for French laboratories using different thermal-optical methods (five laboratories only). While there is good agreement on total carbon (TC) measurements among all participants, some differences can be observed on the EC / TC ratio, even among laboratories using the same thermal protocol. These results led to further tests on the influence of the optical correction: results obtained from different European laboratories confirmed that there were higher differences between OC<sub>TOT</sub> and OC<sub>TOR</sub> measured with NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between EC<sub>TOT</sub> / EC<sub>TOR</sub> ratios can be observed when comparing results obtained for rural and urban samples, with EC<sub>TOT</sub> being 50% lower than EC<sub>TOR</sub> at rural sites whereas it is only 20% lower at urban sites. The PM chemical composition could explain these differences but the way it influences the EC–OC measurement is not clear and needs further investigation. Meanwhile, some additional tests seem to indicate an influence of oven soiling on the EC–OC measurement data quality. This highlights the necessity to follow the laser signal decrease with time and its impact on measurements. Nevertheless, this should be confirmed by further experiments, involving more samples and various instruments, to enable statistical processing. All these results provide insights to determine the quality of EC–OC analytical methods and may contribute to the work toward establishing method standardisation

    A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis

    No full text
    The immunoproteasome, a distinct class of proteasome found predominantly in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on class I major histocompatibility complexes (MHC-I). However, a specific role for the immunoproteasome in regulating other facets of immune responses has not been established. We describe here the characterization of PR-957, a selective inhibitor of low-molecular mass polypeptide-7 (LMP7, encoded by Psmb8), the chymotrypsin-like subunit of the immunoproteasome. PR-957 blocked presentation of LMP7-specific, MHC-I-restricted antigens in vitro and in vivo. Selective inhibition of LMP7 by PR-957 blocked production of interleukin-23 (IL-23) by activated monocytes and interferon-gamma and IL-2 by T cells. In mouse models of rheumatoid arthritis, PR-957 treatment reversed signs of disease and resulted in reductions in cellular infiltration, cytokine production and autoantibody levels. These studies reveal a unique role for LMP7 in controlling pathogenic immune responses and provide a therapeutic rationale for targeting LMP7 in autoimmune disorders

    Synthesis and Biological Investigation of Δ<sup>12</sup>-Prostaglandin J<sub>3</sub> (Δ<sup>12</sup>-PGJ<sub>3</sub>) Analogues and Related Compounds

    No full text
    A series of Δ<sup>12</sup>-prostaglandin J<sub>3</sub> (Δ<sup>12</sup>-PGJ<sub>3</sub>) analogues and derivatives were synthesized employing an array of synthetic strategies developed specifically to render them readily available for biological investigations. The synthesized compounds were evaluated for their cytotoxicity against a number of cancer cell lines, revealing nanomolar potencies for a number of them against certain cancer cell lines. Four analogues (<b>2</b>, <b>11</b>, <b>21</b>, and <b>27</b>) demonstrated inhibition of nuclear export through a covalent addition at Cys528 of the export receptor Crm1. One of these compounds (i.e., <b>11</b>) is currently under evaluation as a potential drug candidate for the treatment of certain types of cancer. These studies culminated in useful and path-pointing structure–activity relationships (SARs) that provide guidance for further improvements in the biological/pharmacological profiles of compounds within this class
    corecore