77 research outputs found

    Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types

    Get PDF
    Nonsymbiotic hemoglobins (ns-Hbs) previously have been found in monocots and dicots; however, very little is known about the tissue and cell type localization as well as the physiological function(s) of these oxygen-binding proteins. We report the immunodetection and immunolocalization of ns-Hbs in rice (Oryza sativa L.) by Western blotting and in situ confocal laser scanning techniques. Ns-Hbs were detected in soluble extracts of different tissues from the developing rice seedling by immunoblotting. Levels of ns-Hbs increased in the germinating seed for the first six days following imbibition and remained relatively constant thereafter. In contrast, ns-Hb levels decreased during leaf maturation. Roots and mesocotyls contained detectable, but low levels of ns-Hbs. Split-seed experiments revealed that ns-Hbs are synthesized de novo during seed germination and are expressed in the absence of any signal originating from the embryo. Immunolocalization of ns-Hbs by con- focal microscopy indicated the presence of ns-Hbs primarily in differentiated and differentiating cell types of the developing seedling, such as the aleurone, scutellum, root cap cells, sclerenchyma, and tracheary elements. To our knowledge, this is the first report of the specific cellular localization of these proteins during seedling development

    Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types

    Get PDF
    Nonsymbiotic hemoglobins (ns-Hbs) previously have been found in monocots and dicots; however, very little is known about the tissue and cell type localization as well as the physiological function(s) of these oxygen-binding proteins. We report the immunodetection and immunolocalization of ns-Hbs in rice (Oryza sativa L.) by Western blotting and in situ confocal laser scanning techniques. Ns-Hbs were detected in soluble extracts of different tissues from the developing rice seedling by immunoblotting. Levels of ns-Hbs increased in the germinating seed for the first six days following imbibition and remained relatively constant thereafter. In contrast, ns-Hb levels decreased during leaf maturation. Roots and mesocotyls contained detectable, but low levels of ns-Hbs. Split-seed experiments revealed that ns-Hbs are synthesized de novo during seed germination and are expressed in the absence of any signal originating from the embryo. Immunolocalization of ns-Hbs by con- focal microscopy indicated the presence of ns-Hbs primarily in differentiated and differentiating cell types of the developing seedling, such as the aleurone, scutellum, root cap cells, sclerenchyma, and tracheary elements. To our knowledge, this is the first report of the specific cellular localization of these proteins during seedling development

    A phylogenomic profile of globins

    Get PDF
    BACKGROUND: Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. RESULTS: A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. CONCLUSION: Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals

    Definitions, Criteria and Global Classification of Mast Cell Disorders with Special Reference to Mast Cell Activation Syndromes: A Consensus Proposal

    Get PDF
    Activation of tissue mast cells (MCs) and their abnormal growth and accumulation in various organs are typically found in primary MC disorders also referred to as mastocytosis. However, increasing numbers of patients are now being informed that their clinical findings are due to MC activation (MCA) that is neither associated with mastocytosis nor with a defined allergic or inflammatory reaction. In other patients with MCA, MCs appear to be clonal cells, but criteria for diagnosing mastocytosis are not met. A working conference was organized in 2010 with the aim to define criteria for diagnosing MCA and related disorders, and to propose a global unifying classification of all MC disorders and pathologic MC reactions. This classification includes three types of `MCA syndromes' (MCASs), namely primary MCAS, secondary MCAS and idiopathic MCAS. MCA is now defined by robust and generally applicable criteria, including (1) typical clinical symptoms, (2) a substantial transient increase in serum total tryptase level or an increase in other MC-derived mediators, such as histamine or prostaglandin D 2, or their urinary metabolites, and (3) a response of clinical symptoms to agents that attenuate the production or activities of MC mediators. These criteria should assist in the identification and diagnosis of patients with MCAS, and in avoiding misdiagnoses or overinterpretation of clinical symptoms in daily practice. Moreover, the MCAS concept should stimulate research in order to identify and exploit new molecular mechanisms and therapeutic targets. Copyright (C) 2011 S. Karger AG, Base

    Evolutionary and functional history of the Escherichia coli K1 capsule

    Get PDF
    Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage

    Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions

    Full text link
    [EN] The main objective of this study was to evaluate the influence of pig's age on the effectiveness of a new microbial 3-phytase, produced by Komagataella phaffii, under commercial conditions in barley-wheat based diets. Two experiments were conducted in weaned, growing and finishing pigs; firstly, to determine phytase efficacy on dry matter, organic matter, energy, protein and mineral (phosphorus, P and calcium, Ca) digestibility (n = 48; Experiment 1), and secondly, to evaluate the effect of phytase on growth performance and bone mineralization (n = 312; Experiment 2). In each experiment, three barley-wheat based diets were formulated following the recommendations for each animal age, of which two versions were manufactured, including 0 and 1000 phytase units (FTU)/kg of feed of the new 3-phytase to be tested. Results showed the new phytase had the potential to increase the digestibility of Ca and P (on av. + 0.05 and +0.06, respectively; P < 0.01), especially P digestibility in growing pigs (+0.10; P < 0.001), consequently decreasing P and Ca excretion. Digestible energy (DE) of the diet increased with the addition of phytase in weaned pigs (+0.69 MJ/kg of dry matter (DM); P < 0.001). Dietary inclusion of new 3-phytase enhanced average daily gain from 46 to 94 days of age (+0.07 kg/d; P < 0.05) and decreased feed conversion ratio from 46 to 154 days of age (on av. -0.13; P < 0.05), although no significant effect was observed from 154 to 185 days of age. Addition of the new 3-phytase also promoted bone mineralization, increasing the weight of the bones (+3.99 and +3.64 g of tibia at 95 days and metacarpus at 100 days of age, respectively; P < 0.05) and the ash, Ca and P content in these bones (e.g. + 0.46 and +0.33 g of P in tibia at 95 days and metacarpus at 100 days of age, respectively; P < 0.001). In conclusion, pig age affected the efficacy of a new 3-phytase on P and Ca digestibility both in weaned and growing diets and DE content of the weaned diets, which also resulted in improvements in growth, feed conversion and bone development until 154 days of age. These effects seem to be reduced during the finishing period, although the advantages of the new 3-phytase on bone mineralization were maintained until 185 days of age.We thank the technical staff at the experimental farms of the Research and Technology Animal Centre (CITA-IVIA), the Institute of Animal Science and Technology (Universitat Politècnica de Valencia) and Javier Gómez (Crianzas Campovivo) for expert technical assistance and experimental support.Cambra López, M.; Cerisuelo, A.; Ferrer, P.; Ródenas Martínez, L.; Aligué, R.; Moset, V.; Pascual Amorós, JJ. (2020). Age influence on effectiveness of a novel 3-phytase in barley-wheat based diets for pigs from 12 to 108 kg under commercial conditions. Animal Feed Science and Technology. 267:1-13. https://doi.org/10.1016/j.anifeedsci.2020.114549S113267Adeola, O., & Cowieson, A. J. (2011). BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, 89(10), 3189-3218. doi:10.2527/jas.2010-3715Almeida, F. N., Sulabo, R. C., & Stein, H. H. (2013). Effects of a novel bacterial phytase expressed in Aspergillus Oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs. Journal of Animal Science and Biotechnology, 4(1). doi:10.1186/2049-1891-4-8Arredondo, M. A., Casas, G. A., & Stein, H. H. (2019). Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Animal Feed Science and Technology, 248, 27-36. doi:10.1016/j.anifeedsci.2019.01.001Atakora, J. K. A., Moehn, S., Sands, J. S., & Ball, R. O. (2011). Effects of dietary crude protein and phytase–xylanase supplementation of wheat grain based diets on energy metabolism and enteric methane in growing finishing pigs. Animal Feed Science and Technology, 166-167, 422-429. doi:10.1016/j.anifeedsci.2011.04.030Blaabjerg, K., Nørgaard, J. V., & Poulsen, H. D. (2012). Effect of microbial phytase on phosphorus digestibility in non-heat-treated and heat-treated wheat–barley pig diets1. Journal of Animal Science, 90(suppl_4), 206-208. doi:10.2527/jas.53920Brady, S., Callan, J., Cowan, D., McGrane, M., & O’Doherty, J. (2002). Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower-finisher pigs fed barley/wheat/soya bean meal-based diets. Journal of the Science of Food and Agriculture, 82(15), 1780-1790. doi:10.1002/jsfa.1262Braña, D. V., Ellis, M., Castañeda, E. O., Sands, J. S., & Baker, D. H. (2006). Effect of a novel phytase on growth performance, bone ash, and mineral digestibility in nursery and grower-finisher pigs. Journal of Animal Science, 84(7), 1839-1849. doi:10.2527/jas.2005-565Dersjant‐Li, Y., Awati, A., Schulze, H., & Partridge, G. (2014). Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878-896. doi:10.1002/jsfa.6998Eeckhout, W., & De Paepe, M. (1994). Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology, 47(1-2), 19-29. doi:10.1016/0377-8401(94)90156-2EMIOLA, A., AKINREMI, O., SLOMINSKI, B., & NYACHOTI, C. M. (2009). Nutrient utilization and manure P excretion in growing pigs fed corn-barley-soybean based diets supplemented with microbial phytase. Animal Science Journal, 80(1), 19-26. doi:10.1111/j.1740-0929.2008.00590.xGonzález-Vega, J. C., Walk, C. L., & Stein, H. H. (2015). Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs1. Journal of Animal Science, 93(5), 2255-2264. doi:10.2527/jas.2014-8215Harper, A. F., Kornegay, E. T., & Schell, T. C. (1997). Phytase supplementation of low-phosphorus growing-finishing pig diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. Journal of Animal Science, 75(12), 3174. doi:10.2527/1997.75123174xHaug, W., & Lantzsch, H.-J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), 1423-1426. doi:10.1002/jsfa.2740341217Heaney, R. P., Abrams, S., Dawson-Hughes, B., Looker, A., Looker, A., Marcus, R., … Weaver, C. (2001). Peak Bone Mass. Osteoporosis International, 11(12), 985-1009. doi:10.1007/s001980070020Jørgensen, B. (1995). Effect of different energy and protein levels on leg weakness and osteochondrosis in pigs. Livestock Production Science, 41(2), 171-181. doi:10.1016/0301-6226(94)00048-cKemme, P. A., Jongbloed, A. W., Mroz, Z., & Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science, 75(8), 2129. doi:10.2527/1997.7582129xKiela, P. R., & Ghishan, F. K. (2016). Physiology of Intestinal Absorption and Secretion. Best Practice & Research Clinical Gastroenterology, 30(2), 145-159. doi:10.1016/j.bpg.2016.02.007Kim, J. C., Simmins, P. H., Mullan, B. P., & Pluske, J. R. (2005). The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Animal Feed Science and Technology, 118(1-2), 139-152. doi:10.1016/j.anifeedsci.2004.08.016Koch, M. E., & Mahan, D. C. (1985). Biological Characteristics for Assessing Low Phosphorus Intake in Growing Swine. Journal of Animal Science, 60(3), 699-708. doi:10.2527/jas1985.603699xKonietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology, 37(7), 791-812. doi:10.1046/j.1365-2621.2002.00617.xLittell, R. C., Henry, P. R., & Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76(4), 1216. doi:10.2527/1998.7641216xMahan, D. C. (1982). Dietary Calcium and Phosphorus Levels for Weanling Swine. Journal of Animal Science, 54(3), 559-564. doi:10.2527/jas1982.543559xMavromichalis, I., Hancock, J. D., Kim, I. H., Senne, B. W., Kropf, D. H., Kennedy, G. A., … Behnke, K. C. (1999). Effects of omitting vitamin and trace mineral premixes and(or) reducing inorganic phosphorus additions on growth performance, carcass characteristics, and muscle quality in finishing pigs. Journal of Animal Science, 77(10), 2700. doi:10.2527/1999.77102700xMoehn, S., Atakora, J. K. A., Sands, J., & Ball, R. O. (2007). Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing–finishing pigs fed ad libitum. Livestock Science, 109(1-3), 271-274. doi:10.1016/j.livsci.2007.01.118Oryschak, M. A., Simmins, P. H., & Zijlstra, R. T. (2002). Effect of dietary particle size and carbohydrase and/or phytase supplementation on nitrogen and phosphorus excretion of grower pigs. Canadian Journal of Animal Science, 82(4), 533-540. doi:10.4141/a02-016Peter, C. ., Parr, T. ., Parr, E. ., Webel, D. ., & Baker, D. . (2001). The effects of phytase on growth performance, carcass characteristics, and bone mineralization of late-finishing pigs fed maize–soyabean meal diets containing no supplemental phosphorus, zinc, copper and manganese. Animal Feed Science and Technology, 94(3-4), 199-205. doi:10.1016/s0377-8401(01)00300-5Rodehutscord, M., Faust, M., & Lorenz, H. (1996). Digestibility of phosphorus contained in soybean meal, barley, and different varieties of wheat, without and with supplemental phytase fed to pigs and additivity of digestibility in a wheatsoybean-meal diet. Journal of Animal Physiology and Animal Nutrition, 75(1-5), 40-48. doi:10.1111/j.1439-0396.1996.tb00466.xSelle, P. H., & Ravindran, V. (2008). Phytate-degrading enzymes in pig nutrition. Livestock Science, 113(2-3), 99-122. doi:10.1016/j.livsci.2007.05.014Selle, P. H., Cadogan, D. J., & Bryden, W. L. (2003). Effects of phytase supplementation of phosphorus-adequate, lysine-deficient, wheat-based diets on growth performance of weaner pigs. Australian Journal of Agricultural Research, 54(3), 323. doi:10.1071/ar02121She, Y., Su, Y., Liu, L., Huang, C., Li, J., Li, P., … Piao, X. (2015). Effects of microbial phytase on coefficient of standardized total tract digestibility of phosphorus in growing pigs fed corn and corn co-products, wheat and wheat co-products and oilseed meals. Animal Feed Science and Technology, 208, 132-144. doi:10.1016/j.anifeedsci.2015.07.011Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2Varley, P. F., Callan, J. J., & O’Doherty, J. V. (2011). Effect of dietary phosphorus and calcium level and phytase addition on performance, bone parameters, apparent nutrient digestibility, mineral and nitrogen utilization of weaner pigs and the subsequent effect on finisher pig bone parameters. Animal Feed Science and Technology, 165(3-4), 201-209. doi:10.1016/j.anifeedsci.2011.02.017Varley, P. F., Flynn, B., Callan, J. J., & O’Doherty, J. V. (2011). Effect of phytase level in a low phosphorus diet on performance and bone development in weaner pigs and the subsequent effect on finisher pig bone development. Livestock Science, 138(1-3), 152-158. doi:10.1016/j.livsci.2010.12.014Vipperman, P. E., Peo, E. R., & Cunningham, P. J. (1974). Effect of Dietary Calcium and Phosphorus Level upon Calcium, Phosphorus and Nitrogen Balance in Swine. Journal of Animal Science, 38(4), 758-765. doi:10.2527/jas1974.384758

    Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    Get PDF
    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore