408 research outputs found

    Universal Quantum Signatures of Chaos in Ballistic Transport

    Get PDF
    The conductance of a ballistic quantum dot (having chaotic classical dynamics and being coupled by ballistic point contacts to two electron reservoirs) is computed on the single assumption that its scattering matrix is a member of Dyson's circular ensemble. General formulas are obtained for the mean and variance of transport properties in the orthogonal (beta=1), unitary (beta=2), and symplectic (beta=4) symmetry class. Applications include universal conductance fluctuations, weak localization, sub-Poissonian shot noise, and normal-metal-superconductor junctions. The complete distribution P(g) of the conductance g is computed for the case that the coupling to the reservoirs occurs via two quantum point contacts with a single transmitted channel. The result P(g)=g^(-1+beta/2) is qualitatively different in the three symmetry classes. ***Submitted to Europhysics Letters.****Comment: 4 pages, REVTeX-3.0, INLO-PUB-94032

    Magnetic-field asymmetry of nonlinear mesoscopic transport

    Full text link
    We investigate departures of the Onsager relations in the nonlinear regime of electronic transport through mesoscopic systems. We show that the nonlinear current--voltage characteristic is not an even function of the magnetic field due only to the magnetic-field dependence of the screening potential within the conductor. We illustrate this result for two types of conductors: A quantum Hall bar with an antidot and a chaotic cavity connected to quantum point contacts. For the chaotic cavity we obtain through random matrix theory an asymmetry in the fluctuations of the nonlinear conductance that vanishes rapidly with the size of the contacts.Comment: 4 pages, 2 figures. Published versio

    Long-Range Energy-Level Interaction in Small Metallic Particles

    Get PDF
    We consider the energy level statistics of non-interacting electrons which diffuse in a d d -dimensional disordered metallic conductor of characteristic Thouless energy Ec. E_c. We assume that the level distribution can be written as the Gibbs distribution of a classical one-dimensional gas of fictitious particles with a pairwise additive interaction potential f(ε). f(\varepsilon ). We show that the interaction which is consistent with the known correlation function of pairs of energy levels is a logarithmic repulsion for level separations ε<Ec, \varepsilon <E_c, in agreement with Random Matrix Theory. When ε>Ec, \varepsilon >E_c, f(ε) f(\varepsilon ) vanishes as a power law in ε/Ec \varepsilon /E_c with exponents 12,2, -{1 \over 2},-2, and 32 -{3 \over 2} for d=1,2, d=1,2, and 3, respectively. While for d=1,2 d=1,2 the energy-level interaction is always repulsive, in three dimensions there is long-range level attraction after the short-range logarithmic repulsion.Comment: Saclay-s93/014 Email: [email protected] [2017: missing figure included

    Isolated resonances in conductance fluctuations in ballistic billiards

    Full text link
    We study numerically quantum transport through a billiard with a classically mixed phase space. In particular, we calculate the conductance and Wigner delay time by employing a recursive Green's function method. We find sharp, isolated resonances with a broad distribution of resonance widths in both the conductance and the Wigner time, in contrast to the well-known smooth conductance fluctuations of completely chaotic billiards. In order to elucidate the origin of the isolated resonances, we calculate the associated scattering states as well as the eigenstates of the corresponding closed system. As a result, we find a one-to-one correspondence between the resonant scattering states and eigenstates of the closed system. The broad distribution of resonance widths is traced to the structure of the classical phase space. Husimi representations of the resonant scattering states show a strong overlap either with the regular regions in phase space or with the hierarchical parts surrounding the regular regions. We are thus lead to a classification of the resonant states into regular and hierarchical, depending on their phase space portrait.Comment: 2 pages, 5 figures, to be published in J. Phys. Soc. Jpn., proceedings Localisation 2002 (Tokyo, Japan

    Theory of scanning gate microscopy

    Get PDF
    A systematic theory of the conductance measurements of non-invasive (weak probe) scanning gate microscopy is presented that provides an interpretation of what precisely is being measured. A scattering approach is used to derive explicit expressions for the first and second order conductance changes due to the perturbation by the tip potential in terms of the scattering states of the unperturbed structure. In the case of a quantum point contact, the first order correction dominates at the conductance steps and vanishes on the plateaus where the second order term dominates. Both corrections are non-local for a generic structure. Only in special cases, such as that of a centrally symmetric quantum point contact in the conductance quantization regime, can the second order correction be unambiguously related with the local current density. In the case of an abrupt quantum point contact we are able to obtain analytic expressions for the scattering eigenfunctions and thus evaluate the resulting conductance corrections.Comment: 19 pages, 7 figure

    Semiclassical Theory of Chaotic Quantum Transport

    Get PDF
    We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic field dependence. This semiclassical treatment accounts for current conservation.Comment: 4 pages, 1 figur

    Embedding method for the scattering phase in strongly correlated quantum dots

    Full text link
    The embedding method for the calculation of the conductance through interacting systems connected to single channel leads is generalized to obtain the full complex transmission amplitude that completely characterizes the effective scattering matrix of the system at the Fermi energy. We calculate the transmission amplitude as a function of the gate potential for simple diamond-shaped lattice models of quantum dots with nearest neighbor interactions. In our simple models we do not generally observe an interaction dependent change in the number of zeroes or phase lapses that depend only on the symmetry properties of the underlying lattice. Strong correlations separate and reduce the widths of the resonant peaks while preserving the qualitative properites of the scattering phase.Comment: 11 pages, 3 figures. Proceedings of the Workshop on Advanced Many-Body and Statistical Methods in Mesoscopic Systems, Constanta, Romania, June 27th - July 2nd 2011. To appear in Journal of Physics: Conference Serie

    Effect of dephasing on the current statistics of mesoscopic devices

    Full text link
    We investigate the effects of dephasing on the current statistics of mesoscopic conductors with a recently developed statistical model, focusing in particular on mesoscopic cavities and Aharonov-Bohm rings. For such devices, we analyze the influence of an arbitrary degree of decoherence on the cumulants of the current. We recover known results for the limiting cases of fully coherent and totally incoherent transport and are able to obtain detailed information on the intermediate regime of partial coherence for a varying number of open channels. We show that dephasing affects the average current, shot noise, and higher order cumulants in a quantitatively and qualitatively similar way, and that consequently shot noise or higher order cumulants of the current do not provide information on decoherence additional or complementary to what can be already obtained from the average current.Comment: 4 pages, 4 figure

    Chaos and Interacting Electrons in Ballistic Quantum Dots

    Full text link
    We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems makes their susceptibility parametrically larger than that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig

    Phase sensitive noise in quantum dots under periodic perturbation

    Full text link
    We evaluate the ensemble averaged noise in a chaotic quantum dot subject to DC bias and a periodic perturbation of frequency Ω\Omega. The noise displays cusps at bias Vn=nΩ/eV_n=n\hbar\Omega/e that survive the average, even when the period of the perturbation is far shorter than the dwell time in the dot. These features are sensitive to the phase of the time-dependent scattering amplitudes of electrons to pass through the system.Comment: Published version. Improved discussion, with a few small typos correcte
    corecore