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Abstract. - We consider the energy level statistics of non-interacting electrons which diffuse in a
rf-dimensional disordered metallic conductor of characteristic Thouless energy E,.. We assume that
the level distribution can be written äs the Gibbs distribution of a classical one-dimensional gas of
fictitious particles with a pairwise additive interaction potential /(ε). We show that the interaction
which is consistent with the known correlation function of pairs of energy levels is a logarithmic
repulsion for level separations ε < Ec, in agreement with the random matrix theory. When ε> Ec,
/(ε) vanishes äs a power law in ε/Ε,, with exponents -1/2, — 2, and — 3/2 for d = l, 2, and 3,
respectively. While for d = 1,2 the energy level interaction is always repulsive, in three dimensions
there is long-range level attraction after the short-range logarithmic repulsion.

A statistical description of the Hamiltonian H of a complex System is provided by the random
matrix theory. A key feature in this theory is the spectral rigidity of the energy levels: their
distribution P(Ei , Ez , ..., EN) formally coincides with the Gibbs distribution of the positions of a
one-dimensional gas on N classical particles with a repulsive logarithmic interaction,

) ] , ( 1 )

·9Γ({Εη}) =- Σ In \Ei - Ej \ + Σ V(Ei) . (2)
i<i i

Here Z is a normalization constant, and V(E) is a confming potential. The parameter ß,
playing the role of an inverse temperature, depends on the symmetry class of the ensemble of
random Hamiltonians [1]. A method which yields such a distribution consists in assigning to
the Hamiltonian H a probability distribution of maximum Information entropy given a
spectral constraint [2]. For instance, a constraint on the expectation value of Σ Ef yields the

i
Gaussian ensembles, where V(E) <* E2. Other ensembles, characterized by different V(E),
result from other spectral constraints (e.g., the averaged level density). All these classical
ensembles of random matrices have in common the absence of eigenvalue-eigenvector
correlations and a logarithmic repulsion between pairs of eigenvalues.

The use of this theory for the study of electronic properties of small metallic particles was



2 EUROPHYSICS LETTERS

introduced by Gorkov and Eliashberg [3]. Theoretical support for the logarithmic repulsion of
energy levels came with the work of Efetov [4]. Assuming bulk diffusion of the electrons by
elastic scatterers, he obtained for the spectrum of metallic particles the same correlation
function äs in classical sets of random matrices. Subsequently, addressing the connection
between universal conductance fluctuations [5] and the universal properties of random
matrices, Al'tshuler and ShklovsM [6] showed that, for energy separations \E - E' \ greater
than the Thouless energy E,,, the correlation function deviates from the classical random
matrix theory. The relevant crossover energy scale Ec = Dti/L2 is inversely proportional to
the time terg it takes for an electron to diffuse (with diffusion coefficient D) across a particle of
size L. The results of the perturbation theory were recently rederived by Argaman, Imry,
and Smilansky, using a more intuitive semi-classical method [7].

One would not expect that the logarithmic level repulsion in eq. (2) holds for levels which
are separated by more than Ec . What is then the long-range energy level interaction in small
metallic particles? To address this question, we use a recently developed functional-
derivative technique to compute correlation functions in random matrix ensembles with an
arbitrary two-body interaction potential [8]. The restriction to two-body (i.e. pairwise
additive) interaction is our single assumption. We find that Ec characterizes a crossover
between a short-range logarithmic repulsion and a novel long-range part which decays äs a
power law, with a dimensionality-dependent exponent. The interaction remains repulsive for
dimensions l and 2, but exhibits a long-range attractive part after a short-range repulsion in 3
dimensions.

The starting point of our analysis is the Gibbs distribution (1) with an arbitrary two-body
interaction /( | E — E' \ ) in the fictitious «Hamiltonian» .9Γ,

.9Γ({Εη}) = Σ/( \Ei - Ej \ ) + Σ V(Ei) . (3)
i<j i

The mean eigenvalue density (p(E)) is related to V(E) and f(E — £") by an integral
equation, valid [9] to the leading order of a l/N expansion:

co

V(E) = - d E ' ( p ( E ' ) ) f ( \ E - E ' \ ) . (4)

Equation (4) has the intuitive «mean-field» Interpretation (originally due to Wigner), that
the «charge density» (p) adjusts itself to the «external potential» V in such a way that the
total force on any charge E vanishes. Dyson [9] has evaluated the first correction to eq. (4),
which is smaller by a factor N'1 In N.

The density-density correlation function defmed by

K2(E, E ' ) = (p(E))(P(E')) - (p(E)p(E')) (5)

can be expressed äs a functional derivative [8],

(6,. .
β SV(E')

Equation (6) is an exact consequence of eqs. (1) and (3). Physically, it means that
correlations between E and E' are important when a modification of the potential at E' has a
substantial impact on the mean density at E. Combining eqs. (4) and (6), one can see that
K2(E, E ' ) = K Z ( \ E - E' |) is translationally invariant and independent of the confming
potential V(E), depending on the two-body interaction /(ε) only. This property is at the heart
of universality in the random matrix theory [8, 9].
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By Fourier transfonning the convolution (4), the time-dependent two-level form factor

? ffΓ

K2(t) = l
h

can be written äs

.
β SV(t) ßf(t)

This relationship gives us the prescription for obtaining the eigenvalue interaction /(ε) from
the density-density correlation function Κ 2 ( ε ) .

For disordered Systems in the weak-scattering limit, the perturbation theory
gives [6]

s2

Κ2(ε) = — Re Σ (ε + ihDq2 + ίγΓζ , (9)
βττ {η,,}

for energies ε large compared to the level spacing Δ, and small compared with the energy
scale h/Te , associated with the elastic-scattering time τβ . The factor s = 2 accounts for the
spin degeneracy of each level, γ is a small-energy cut-off (to account for inelastic scattering)
and the parameter β equals l (2) in the presence (absence) of time-reversal symmetry (ß = 4
for time-reversal symmetry with strong spin orbit scattering). The sum is over the
eigenvalues of the diffusion equation for the sample, assumed to be a c£-dimensional

/ d \parallelepiped with sides L,Aqz = π2 Σ (ημ/1ιμ)
ζ\. In what follows we put s = l and 7 = 0,

^ μ = l '

ignoring the spin degeneracy and the small-energy cut-off, and we work for simplicity with a
hypercube of size L. The Fourier transform of eq. (9) is

K2(t) = --^7 Σβχρ(-^2 | ί | Σ K/L)2). (10)
ßnh K} \ f = l /

The long- and short-range limits K2 (i) and Kl (t) of the form factor (10) can be obtained in
closed form [7]. The crossover time scale is the ergodic time ierg = h/Ec . For times t » ierg the
first term of eq. (10) dominates the sum, while for t « terg one can convert the sums over nu

into Gaussian integrals. The resulting long- and short-time limits are [7]

(lla)
ßnh

1 * 1 Ld\t

We use the Interpolation formula

K2(t)^K2(t) + K j ( t ) , (12)

which is sufficient for the purpose of obtaining the asymptotic behaviour of the interaction
potential.

Combining eqs. (6) and (12), the interaction potential fd (ε) for d dimensions can be written
äs

td/z

(13),
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where α = ε/(ΔπΕκ) is the dimensionless energy variable. The integral (13) can be evaluated
numerically for all a, and analytically in the small- and large-α liraits. For | « | « l we can
approximate cos öd — l and cut the upper Integration limit at l/ 1 « , which readily yields the
short-range universal logarithmic interaction /d (ε) = - In | α | . For α | — » <x> the high-frequency
oscillations of cos at average the integral to zero, in a way which depends on the dimensionality.
The easiest case is d = 2, where the integral can be evaluated in a closed form,

fz (ε) = - sin | α | si | α | - cos (a) ci (a) , (14)

which behaves äs - In | a -6 for small | α | (6 is Euler's constant), and l/a2 is the dominant
term of an asymptotic expansion of eq. (13) for | « | » 1. We therefore recover the short-range
logarithmic repulsion and find that the interaction remains repulsive in the whole energy
ränge. For d = 3, the asymptotic limits of the interaction can be obtained by considering the
auxiliary function

which satisfies h' (a) = /3(a) äs well äs the differential equation

sin
Ä ' ( a ) = -Ä(oc)- - f

α α J
du- (16)

The second term on the r.h.s. becomes - l in the small-α limit, and - 3 A/H 2α | 3/2 in the
large-α limit. We thus obtain/3 (ε) = - In | α | - β for | a | «l and - Λ/π 12α \ ~3/2 for |α| »1.
Therefore, in d = 3, we have an attractive eigenvalue interaction for large separations. Using
a similar procedure for d = l, we obtain the same short-range logarithmic repulsion
- In |«| - 6, which crosses over to an algebraic repulsion /i (ε) = V^|2«| ~^2 for
«»1.

In fig. l we compare a numerical Integration of eq. (13) with the asymptotic expressions
derived above, which we summarize:

-ff if «E„ (17α)

'·<·>- U
/!<«) =

-1/2

-

Α (·>--ί U
-3/2

if U l »E, (176)

Figure l shows the crossover from the universal logarithmic short-range repulsion into
the novel long-range power law regime (repulsive for d = l, 2 and attractive for d = 3).

We have used microscopic theories for having Κ 2 ( ε ) . The validity of our results is then
restricted to the validity of these perturbative or semi-classical approaches: ε»Δ, and
ε « Ä/re. Since Efetov has shown that the random matrix theory remains valid for ε « Δ, the
universal logarithmic repulsion which we recover must be also valid for these small-energy
separations, though either perturbation theory (eq. (9)), or our method based on an
asymptotic large-Af approximation miss fine structure on the scale of Δ.
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Fig. 1. - Interaction potential according to eq. (13) for various spatial dimensions d (solid line), together
with the short-range logarithmic (dashed line) and long-range power law (dot-dashed line) asymptotic
forms described by eqs. (17). Inset: blow-up of the departure from the short-range logarithmic
interaction.

The condition ε«#/τβ limits the non-universal algebraic decay which we find for
ε > Ec Ξ h/terg · These non-universal interactions result from the non-ergodic electron dynamics
for t < £erg, which is in our case unbounded diffusion in d dimensions. For times smaller than re

the electron motion is ballistic, a behaviour which is not considered in our theory.
It is interesting to consider the scale dependence of the interaction potential. In d — 3, the

level spacing scales äs A α L ~3 while Ec <* L ~2, so that Δ «Ee äs L —» oo. Therefore if we
measure \E — E'\ in units of Δ, the interaction/(E1 — E') scales with L towards the universal
random matrix repulsion for about L nearest-neighbour levels for three-dimensional
conductors. However, the total number of levels being proportional to L3, the relation (4)
between the average density (p(E)) and the confining potential V(E) still differs from the
usual expression (i.e. with a logarithmic interaction) in the thermodynamic limit.

Our analysis is restricted to metallic particles which are small compared with the
localization length. In the thermodynamic limit, electrons are always localized for d = l or 2
(except for β = 4 in d = 2 at low disorder). Anderson localization occurs also in three
dimensions for large disorder. In these cases, our perturbative starting point equation (9) is
no longer valid. In the presence of eigenvector localization, /(ε) probably scales with the
System size towards a delta function (uncorrelated levels in the limit of strong localization).
An interesting issue that we postpone for future studies is to determine the scale-invariant
behaviour/c(ε) of the interaction at the mobility edge. Such a behaviour can be conjectured
from a recent numerical study [10] showing that the level spacing distribution is scale
invariant at the mobility edge.

In summary, we have calculated in the metallic regime the dimensionality-dependent
long-range part of the energy level interaction. We have found in three dimensions a
completely unexpected crossover from level repulsion to level attraction. Our method is
based on a general relation [8] between the density-density correlation function and this
interaction. We use it in a particular case where this correlation function is known from
perturbation theory (or an equivalent semi-classical theory). Our single basic assumption is
that the füll many-body interaction of the energy levels is an arbitrary two-body interaction.



6 EUROPHYSICS LETTERS

If this is exact, /(ε) bears the complete Information about the spectral statistics, and our
result provides a generating functional formalism for the calculations of all n-level correlation
functions. However, the known methods of Integration of eq. (1), using orthogonal
polynomials, cannot be used with our new /(| ε |). This makes the calculation of high-order
correlations difficult. The w-order cumulants of the density of states, evaluated at the same
energy only, are given by Al'tshuler, Kravtsov and Lerner (see ref. [5]) from a
field-theoretical representation for the moments of mesoscopic fluctuations. An interesting
issue would consist in obtaining from our new interaction the slow logarithmically normal
decay of the probability of very large fluctuations.

However, even if our basic assumption turns out not to give the same π-level correlation
äs the microscopic models, our result would still show what the level interaction becomes,
when treated äs an effective «self-consistent» two-body interaction. This opens up a new
problem in the randoni matrix theory, to identify what kind of modification of the eigenvector
statistics from Porter-Thomas distribution [1] generates the correct long-range behaviour of
the correlation function obtained by microscopic theory. The classical randoni matrix
ensembles are invariant under canonical (orthogonal, unitary or symplectic) transformations
and the infinite-range logarithmic-level repulsion results from the maximum randomness of
the eigenvectors, in a maximum-entropy approach. In the limit of strong disorder (localized
regime), when the kinetic energy is negligible compared to the strength of the randoni
fluctuations of the electrostatic potential, a more natural basis, where the Hamiltonian is
likely to be almost diagonal, is given by appropriate local-site wave functions. This is why in
this limit the ränge of the logarithmic interaction must shrink to smaller and smaller
intervals. Our result indicates that even for weaker disorder (metallic regime) H cannot be
statistically invariant under change of basis and that a new constraint (ignored thus far) on
the eigenvectors is required to describe level Separation larger than Ec.

This work was supported in part by EEC, Contract No. SCC-CT90-0020, and by the
Dutch Science Foundation NWO/FOM.
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