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Abstract. - The conductance of a ballistic quantum dot (having chaotic classical dynamics and
being coupled by ballistic point contacts to two electron reservoirs) is computed on the single
assumption that its scattering matrix is a member of Dyson's circular ensemble. General
formulae are obtained for the mean and variance of transport properties in the orthogonal
(ß = 1), unitary (ß = 2), and symplectic (ß = 4) symmetry class. Applications include universal
conductance fluctuations, weak localization, sub-Poissonian shot noise, and normal-metal-
superconductor junctions. The complete distribution P(g) of the conductance g is computed for
the case that the coupling to the reservoirs occurs via two quantum point contacts with a single
transmitted channel. The result P(g) °c g^1+ß/2 is qualitatively different in the three symmetry
classes.

The search for signatures of chaotic behaviour in quantum-mechanical Systems [1] has
recently been extended to semiconductor nanostructures known äs «quantum dots»[2,3].
A quantum dot is essentially a mesoscopic electron billiard, consisting of a ballistic cavity
connected by two small holes to two electron reservoirs. An electron which is injected
through one of the holes will either return through the same hole, with probability R, or be
transmitted through the other hole, with probability T. Classically, the uniform (ergodic)
exploration of the boundaries yields T = R, if the two holes are of the same size and
sufficiently small that direct transmission (without boundary reflections) can be
ignored.

For a closed quantum dot (without holes), it is well known that one of the quantum
signatures of its classically chaotic character consists in the Wigner-Dyson distribution of the
energy levels [4,5]. The Wigner-Dyson distribution was originally derived by randoni matrix
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theory (RMT), and is characterized by a repulsion of nearby levels which depends only on the
symmetry of the Hamiltonian. The quantum analogue of the ergodic exploration of the dot
boundaries by the classical trajectories consists in the Porter-Thomas distribution of the
eigenfunctions, äs confirmed by numerical studies of their amplitude distribution at the
boundaries [6]. The quantum dot with holes is an open, rather than a closed System. Just äs
the Wigner-Dyson distribution describes the Hamiltonian H of the closed System, Dyson's
circular ensemble [7] provides the statistical properties of the scattering matrix S of the open
System. For ballistic dots (without impurities) the statistical ensemble can be generated by a
change of the Fermi energy, the magnetic field or the shape of the dot. To have spectral or
scattering properties given by the universal RMT description for H or S can be actually
regarded äs a precise definition of the somewhat vague concept of «quantum chaos». To what
extent a real ballistic cavity is close to this precise universal limit is the subject of the theory
of quantum billiards [5,8].

Assuming this definition of a quantum chaotic System — and this is our only assump-
tion — we will calculate the statistics of the transmission and reflection eigenvalues of the
quantum dot, and hence its transport properties. This allows us to determine the universal
quantum signatures of chaos in ballistic transport. Our investigation was motivated by a
remarkable calculation by Mello of the variance of the conductance in the circular unitary
ensemble [9]. The approach presented below recovers his result äs a special case, and puts
the quantum transport theory for a ballistic chaotic billiard on the same footing äs the
established theory for a disordered wire.

Dyson's circular ensemble characterizes a System where all scattering processes are
equally probable, subject to the constraints of current conservation and time-reversal and
spin rotation symmetry. There exist three symmetry classes: if a magnetic field B is applied,
S is only unitary (ß = 2, unitary ensemble); when B = 0, S is a unitary Symmetrie matrix in
the absence of spin-orbit scattering (ß = l, orthogonal ensemble) or otherwise a unitary
self-dual quaternion matrix (ß = 4, symplectic ensemble). The dimension of S is 2N x 2N,
where N is the number of transverse modes at the Fermi level in each of the two leads
connecting the dot to the reservoirs. The probability Pß(dS) to find S in a neighbourhood dS
of some given S is

Pß(dS)= -μβ(ά8), (1)

where Vß = /^(dS) is the total volume of the S-matrix space and ^(cLS) is the /3-dependent
measure of the neighbourhood dS of S. In the original work of Dyson [7], these measures are
expressed in eigenvalue-eigenvector coordinates. This is a suitable representation to obtain
the distribution of the scattering phase shifts, but is not very convenient for a study of
conduction through the quantum dot. A transport property A can generally be expressed äs a

N

linear statistic A= Σ f(Tn) on the transmission eigenvalues Tn. The Tn's are not
n = l

eigenvalues of S and are not in any simple way related to the scattering phase shifts. Instead,
T n is an eigenvalue of the matrix product tt\ where the transmission matrix t is an N x N
submatrix of S. The measures μβ(ά8) have recently been calculated in the trans-
mission-eigenvalue representation [10]. Since this technical advance is at the basis of our
analysis, we briefly sketch the derivation for the orthogonal ensemble (ß = 1).

For ß = l the scattering matrix is unitary Symmetrie, so that it can be represented in the
form S = ΥΥΎ , where Υ is unitary. Note that this decomposition is not unique. An
infinitesimal neighbourhood dS of S is given by dS = iYdQYT , with dQ a real Symmetrie
matrix. It has been shown by Dyson [7] that if the matrix elements dQ„ vary through some
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, small intervals of lengths d f x y , the measure μ1 equals fx1(dS1) = Π d^y, independent of F.
We use this freedom to choose F in the form I S J

where (/l is an N x N diagonal matrix with elements Rn = l - Tn. Since idQ = dFTF* +
+ F fdF, and since Υ and dF can be expressed in terms of the matrices W, (9, V and their
neighbourhoods d?/ and d(9, one can easily get dQ in this parametrization. The result is an
expression for μι(ά8) in terms of the measures μ(ΑΉ) and μ(ά£/ϊ) associated with the
matrices W and ( Ä , times a Jacobian:

= Π lÄ.-ÄjnU-Ä.r'Vd^Vid?/). (3)

Integration over the unitary matrix W gives the reflection eigenvalue distribution
P(Ri, Rz, ···, RN) in the circular orthogonal ensemble. The calculations in the unitary [10]
and symplectic [11] ensembles proceed similarly.

The final result is conveniently written in terms of a new set of variables λη e [0, oo](

related to the reflection and transmission eigenvalues by _ßK = λη/(1 + λπ), Τη = !/(! + λη).
The distribution Ρ(λι, λζ, ..., λΝ) of the λ-variables takes the form of a Gibbs
distribution,

Ρ({λΒ}) = ̂ -1

6χρ[-(8.^({λκ})], (4α)

.9Γ({λπ})= - Σ In |λ,-λ,| +Σνβ(λι), (40)
Κ] l

η(1 + λ), (4c)

where Ζ is a normalization constant. The symmetry parameter β e {l, 2, 4} plays the role of
an inverse temperature. The fictitious «Hamiltonian» ffT consists of a logarithmic pairwise
interaction plus a one-body potential Vß (λ). This potential is symmetry independent to Order
N, while the term of order N ° depends on ß.

Remarkably, the distribution (4) is identical to the global maximum-entropy ansatz for the
transfer matrix of a diffusive conductor [12]—except for the one-body potential, which is
different: the potential Fd(A) for a disordered wire of length L and mean free path l is
Fd(A) = (Nl/L) 1η2(·\/λ + Vl + λ) + (9(N°). The potential (4c), in contrast, contains no
microscopic parameters and increases more slowly with λ. In the case of a disordered wire, it
is known [13] that the logarithmic repulsion - In \Xt — λ: \ is only rigorously valid for the
weakly reflected scattering channels (λ,, λ^« 1). In the ballistic chaotic dot, the logarithmic
repulsion which we have found is a direct consequence of the basic assumption that the
scattering matrix belongs to the circular ensemble. N

We consider transport properties of the form A = Σ α(λη). Το calculate the expectation
χ re = l

value (A) = α(λ)ρ(λ)άλ for a ballistic chaotic system, we need the density ρ(λ) of the A's in
o

the circular ensemble. For this purpose, we use Dyson's large-7V expansion [7]
co

i λ - λ ' 2/3 άλ άλ
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where / denotes the principal value. We decompose p = pN + Sp into a contribution pN of
order N (giving the «Boltzmann conductance») and a symmetry-dependent correction Sp of
order Λ''0 (responsible for the «weak-localization effect»). From eqs. (4) and (5) we find, order
by order 0),

cc

f N m N

— =*ΡΝ(λ) = —

A - A - « Α t, -M' "}

U 00

where the one-sided delta-function satisfies £ + ( A ) c U = l. The transmission eigenvalue

density p N (T) = ρ Ν ( λ ) \ ά λ / ά Τ \ (with T = (l + λ)"1) has a bimodal distribution with peaks
near-unit and near-zero transmission. This is a familiär result for a diffusive conductor, but
was not previously established for a chaotic dot. Both peaks have the same strength for the
latter, while the relationship between the strengths of the peaks for a diffusive wire is
governed by l/L. This difference can be understood by comparing eq. (6) and the eigenvalue
density p (d ) for a disordered wire. To order N and for L »l one has [14]

l l
for λ < A e = — exp [2L/1]. (8)

c
2L \Λ(1 + λ) 4

The density goes to zero abruptly near a cut-off A e »l , in such a way that ρ$\λ)άλ = N.

The term of order N° , which yields the weak-localization (antilocalization) corrections for
a disordered wire when β ^ 2, is given by [15]

+ (λ) + (λ + λ2Γ1/2(4 1η2[Λ/λ + λ/ΓΤλ] + π2)-1] , (9)
2β

which is not äs strongly peaked near λ = 0 äs the delta-function result (7) for a chaotic
dot.

We now use eqs. (6) and (7) to calculate the expectation value (T) of the total transmission
probability T = Trttt = 2(l +λ ί 1)~1. According to the Landauer formula, T equals the

n

conductance g (measured in units of 2ez/k, the factor 2 comes from spin degeneracy).
The result is

(T)=-N + ST, ST= -ß~1(ß-2). (10)
2 4

For β = 2, one fmds (T) = (1/2) N = (R) (where (R) = N - (T) is the local reflection
probability). This is the quantum analogue of what we expect from the «ergodic» exploration

O The result (7) for the (9(N°) correction Sp holds only for λ «N2/3, because for larger λ' s the
0(N) contribution pN ~ NX ~3/2 no longer dominates the density and the large-N expansion fails. The

large-λ tau ensures that j äp(A)dA = 0, but is irrelevant for the conductance of the quantum dot. (The

ränge A^TV2 /3»! gives a contribution to g of order .ZV"2/3, which can be neglected relative to the
contribution of order l which is retained.)
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of the dot boundaries by the classical trajectories. Quantum interference then breaks the
equality ( T ) = (R) by an amount ST, due to weak localization (ß = 1) or anti-localization
(ß - 4). The value ST = —1/4 for β = l is in agreement with the result of lida, Weidenmüller
and Zuk for a similar model [16], and demonstrates the point raised in ref. [17]: weak
localization is not only given by coherent backscattering, but has an off-diagonal (in mode
index and classical trajectory labels) component. In the same way one can compute the
average of any other linear statistics. We give two examples to illustrate the generality of
our approach.

The first example is the shot-noise power P which is given by [18] P = P0 Trii f(l — ttf),
with PO = (2e2/h)2eU (U is the applied voltage). In this case α(λ) = Ρ0λ(1 + λ)'2· Since
8ρ(λ) α(λ) Ξ Ο for any β, there is no weak-localization correction for the shot noise of a chaotic
dot—in contrast to a diffusive conductor, where a weak-localization effect does exist [19].

Integration of ρΝ(λ)α(λ) gives the average shot noise power (P) = — NP0 = — Pp0isson,8 4
which is four times smaller than the Poisson noise Ρροί5ΒΟη

 = ffPo ~ 2e7 associated with a
current 7 of uncorrelated electrons. The 1/4 reduction in a chaotic dot is to be compared with
the 1/3 reduction of shot noise in a diffusive conductor [20].

The second example is the conductance GNS of the dot if one of the two attached reservoirs
is a superconductor. This case corresponds to [21] α(λ) = (4e2/A)(l + 2A)~2 if ß = l, 4 (GNS is
not a linear statistic for ß = 2). Again, we find a noticeable difference between the diffusive
disordered wire and the ballistic chaotic dot. In the disordered case, the conductance GN in
the normal state is unchanged if one of the reservoirs becomes superconducting ((GN) =
= (GNS), up to a weak-localization correction of order 7V°). In the ballistic chaotic case, eq. (6)
yields (to order N): {GNS} = (2e2/h)(2 - Λ/2)Ν, which differs to order N from the result
(GN) = (2ez/h)(N/2) in the normal state.

So far we have focused on the expectation values in the circular ensemble. Fluctuations
around the average in this ensemble can be computed using the general formulae of ref. [21],
which hold for any ensemble with a logarithmic interaction (regardless of the form of the
one-body potential). The variance in the large-TV limit is given by

dl)VA 1 1 ^ ί ν ,Var A = --- - dA dA' - - In
nz Jß nz \ dA VÄ + VA'

This can be used to compute the analogue of the «Universal Conductance Fluctuations»
(UCF) in a ballistic chaotic cavity. One obtains, for example, V arg = 1/8/3, VarP/P0 = 1/64/3
for the fluctuations in the conductance and shot noise, respectively. The (l//3)-dependence is
the same äs for a disordered wire, but the numerical coefficients are somewhat different due
to the difference in interaction potential [13].

The results for mean and variance given above require N »l. The opposite regime N = l
is also of interest. This would apply to a semiconductor quantum dot which is coupled to the
reservoirs by two quantum point contacts with a quantized conductance of 2e2 /h. The
probability distribution (4) reduces for 7V = l to P(A) = (l/2)/3(l + X)'l~ß/z· This implies for
the (dimensionless) conductance g = (l + A)"1 the distribution

P(g)=]-ßg~1+ß/z, O^g^l. (12)
LJ

This is a remarkable result: in the presence of magnetic field (ß = 2), any value of the
conductance between 0 and 2e2 /h is equally probable. In non-zero field it is more probable to
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find a small than a large conductance, provided that the boundary scattering preserves spin
rotation symmetry (ß = 1). In the presence of spin-orbit scattering at the boundary (ß = 4),
however, a large conductance is more probable than a small one. To observe this qualitatively
different behaviour presents a challenge for experimentalists.

In summary, we have calculated the distribution of the transmission and reflection
eigenvalues characterizing Dyson's circular ensemble. Relying on a definition of «quantum
chaos» based on the applicability of this ensemble to describe scattering in a ballistic chaotic
cavity, we have extracted from the joint probability distribution (4) the expectation values
and the fluctuations of arbitrary linear statistics related to quantum transport. We have
mainly stressed the differences between ballistic chaotic dots and disordered wires. Another
important point, which we underline in conclusion, consists in the qualitative differences
existing between a fully chaotic dot and a dot where the classical dynamics is integrable and
for which larger quantum fluctuations are generally expected [2,3].
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Additional remark.

Upon completion of this manuscript we received a preprint by Baranger and Mello, in
which some of our results are obtained by a different method.
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