21,662 research outputs found
Strongly misaligned triple system in SR 24 revealed by ALMA
We report the detection of the 1.3 mm continuum and the molecular emission of the disks of the young triple system SR24 by analyzing ALMA (The Atacama Large Millimeter/Submillimter Array) subarcsecond archival observations. We estimate the mass of the disks (0.025 M ⊙ and 4 × 10‑5 M ⊕ for SR24S and SR24N, respectively) and the dynamical mass of the protostars (1.5 M ⊙ and 1.1 M ⊙). A kinematic model of the SR24S disk to fit its C18O (2-1) emission allows us to develop an observational method to determine the tilt of a rotating and accreting disk. We derive the size, inclination, position angle, and sense of rotation of each disk, finding that they are strongly misaligned (108^circ ) and possibly rotate in opposite directions as seen from Earth, in projection. We compare the ALMA observations with 12CO SMA archival observations, which are more sensitive to extended structures. We find three extended structures and estimate their masses: a molecular bridge joining the disks of the system, a molecular gas reservoir associated with SR24N, and a gas streamer associated with SR24S. Finally, we discuss the possible origin of the misaligned SR24 system, concluding that a closer inspection of the northern gas reservoir is needed to better understand it. Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zapata, L. A.. Universidad Nacional Autónoma de México; MéxicoFil: Gabbasov, R.. Universidad Autónoma del Estado de Hidalgo; Méxic
Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)(2): density functional theory and X-ray diffraction investigation
The cobalt carbonate hydroxide Co2CO3(OH)2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co2CO3(OH)2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu2CO3(OH)2] and rosasite [Cu1.5Zn0.5CO3(OH)2], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu1.34Co0.66CO3(OH)2]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co2CO3(OH)2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P1121/n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co2CO3(OH)2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor fit of the PXRD data. The possibility that Co2CO3(OH)2 could crystallize, under different growth conditions, as either rosasite or malachite, or even as a stacking-disordered phase intermediate between the two, requires further investigation
Microduplication 10q24.31 in a Spanish girl with scoliosis and myopathy:the critical role of LBX
Experimental evaluation of IEEE 802.15.4/ZigBee for multi-patient ECG monitoring
IEEE 802.15.4/ZigBee wireless sensor networks (WSNs) are a promising alternative to cabled systems for patient monitoring in hospitals. Some areas where monitoring systems based on WSNs can be successfuly used are ambulatory, waiting and triage rooms, post-op, and emergency rooms. The low power and small size ZigBee devices have the ability to form self-configuring networks that can extend themselves through a hospital wing or floor. Using spatially distributed networks, it is possible to cover an extended area and serve several patients. However, the low data rate protocols provided by IEEE 802.15.4 poses several challenges, mainly because its protocols were primarily designed to operate in low traffic load scenarios but some vital signs sensors generate a large volume of data. This work presents an experimental evaluation of the performance of multi-hop ZigBee networks comprised of several nodes that carry the traffic of wearable electrocardiogram (ECG) sensors. The results indicate that star networks can relay 100% of the traffic generated by at least 12 ECG nodes. In tree topologies, the increase of the network traffic load reduces the performance but even these networks can reliably relay the traffic of a considerable number of ECG nodes.Fundação para a Ciência e a Tecnologia (FCT)Grupo AMI – Assistência Médica Integral (Casa de Saúde Guimarães, SA
Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes
In a companion paper we have presented many products derived from the
application of the spectral synthesis code STARLIGHT to datacubes from the
CALIFA survey, including 2D maps of stellar population properties and 1D
averages in the temporal and spatial dimensions. Here we evaluate the
uncertainties in these products. Uncertainties due to noise and spectral shape
calibration errors and to the synthesis method are investigated by means of a
suite of simulations based on 1638 CALIFA spectra for NGC 2916, with
perturbations amplitudes gauged in terms of the expected errors. A separate
study was conducted to assess uncertainties related to the choice of
evolutionary synthesis models. We compare results obtained with the Bruzual &
Charlot models, a preliminary update of them, and a combination of spectra
derived from the Granada and MILES models. About 100k CALIFA spectra are used
in this comparison.
Noise and shape-related errors at the level expected for CALIFA propagate to
0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities.
Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16
mag for shape errors. Higher order products such as SFHs are more uncertain,
but still relatively stable. Due to the large number statistics of datacubes,
spatial averaging reduces uncertainties while preserving information on the
history and structure of stellar populations. Radial profiles of global
properties, as well as SFHs averaged over different regions are much more
stable than for individual spaxels. Uncertainties related to the choice of base
models are larger than those associated with data and method. Differences in
mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V.
Spectral residuals are ~ 1% on average, but with systematic features of up to
4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte
Maxillofacial reconstruction in a pediatric patient with Osteosarcoma
Osteosarcoma is a bone tumor that consists of malignant cells that produce immature bone. Is a bone tumor that
develops during periods of rapid growth in adolescents and young adults. It is the most common type of bone
cancer in children and adolescents.
The diagnosis and treatment of patients with osteosarcoma requires a multidisciplinary team approach. Resection
of maxillary tumours remains a surgical challenge due to the possible aesthetic and functional secuelae.
We present herein the case of a 15 year-old female with an osteoblastic osteosarcoma of the left maxilla. It was treated with eight cycles of neoadjuvant chemotherapy, followed by a total left maxillectomy. Resection was performed
through a modified Ferguson-Weber approach, using a titanium mesh to reconstruct the orbital base and the maxillary process. A palatal obturator was placed at the same time. The use of a three-dimensional model by stereolithography is extremely helpful in planning and performing the maxillectomy, as well as the facial reconstructio
On the MBM12 Young Association
I present a comprehensive study of the MBM12 young association (MBM12A). By
combining infrared (IR) photometry from the Two-Micron All-Sky Survey (2MASS)
survey with new optical imaging and spectroscopy, I have performed a census of
the MBM12A membership that is complete to 0.03 Msun (H~15) for a 1.75deg X
1.4deg field encompassing the MBM12 cloud. I find five new members with masses
of 0.1-0.4 Msun and a few additional candidates that have not been observed
spectroscopically. From an analysis of optical and IR photometry for stars in
the direction of MBM12, I identify M dwarfs in the foreground and background of
the cloud. By comparing the magnitudes of these stars to those of local field
dwarfs, I arrive at a distance modulus 7.2+/-0.5 (275 pc) to the MBM12 cloud;
it is not the nearest molecular cloud and is not inside the local bubble of hot
ionized gas as had been implied by previous distance estimates of 50-100 pc. I
have also used Li strengths and H-R diagrams to constrain the absolute and
relative ages of MBM12A and other young populations; these data indicate ages
of 2 +3/-1 Myr for MBM12A and 10 Myr for the TW Hya and Eta Cha associations.
MBM12A may be a slightly evolved version of the aggregates of young stars
within the Taurus dark clouds (~1 Myr) near the age of the IC 348 cluster (~2
Myr).Comment: to be published in The Astrophysical Journal, 41 pages, 14 figures,
also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm
Star formation histories in mergers: the spatially resolved properties of the early-stage merger luminous infrared galaxies IC 1623 and NGC 6090
The role of major mergers in galaxy evolution is investigated through a detailed characterization of the stellar populations, ionized gas properties and star formation rates (SFR) in the early-stage merger luminous infrared galaxies (LIRGs) IC 1623 W and NGC 6090, by analysing optical integral field spectroscopy and high-resolution Hubble Space Telescope imaging. The spectra were processed with the starlight full spectral fitting code, and the emission lines measured in the residual spectra. The results are compared with non-interacting control spiral galaxies from the Calar Alto Legacy Integral Field Area survey. Merger-induced star formation is extended and recent, as revealed by the young ages (50–80 Myr) and high contributions to light of young stellar populations (50–90 per cent), in agreement with merger simulations in the literature. These early-stage mergers have positive central gradients of the stellar metallicity, with an average ∼0.6 Z⊙. Compared to non-interacting spirals, they have lower central nebular metallicity, and flatter profiles, in agreement with the gas inflow scenario. We find that they are dominated by star formation, although shock excitation cannot be discarded in some regions, where high velocity dispersion is found (170–200 km s−1). The average SFR in these early-stage mergers (∼23–32 M⊙ yr−1) is enhanced with respect to main-sequence Sbc galaxies by factors of 6–9, slightly above the predictions from classical merger simulations, but still possible in about 15 per cent of major galaxy mergers, where U/LIRGs belong
- …
