13,882 research outputs found
Orientation and temperature dependence of domain wall properties in FePt
An investigation of the orientation and temperature dependence of domain wall properties in FePt is presented. The authors use a microscopic, atomic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of spin-density functional calculations. They find a significant dependence of the domain wall width as well as the domain wall energy on the orientation of the wall with respect to the crystal lattice. Investigating the temperature dependence, they demonstrate the existence of elliptical domain walls in FePt at room temperature. The consequences of their findings for a micromagnetic continuum theory are discussed. (c) 2007 American Institute of Physics
Domain Dynamics of Magnetic Films with Perpendicular Anisotropy
We study the magnetic properties of nanoscale magnetic films with large
perpendicular anisotropy comparing polarization microscopy measurements on
Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte
Carlo simulations of a corresponding micromagnetic model. We focus on the
understanding of the dynamics especially the temperature and field dependence
of the magnetisation reversal process. The experimental and simulational
results for hysteresis, the reversal mechanism, domain configurations during
the reversal, and the time dependence of the magnetisation are in very good
qualitative agreement. The results for the field and temperature dependence of
the domain wall velocity suggest that for thin films the hysteresis can be
described as a depinning transition of the domain walls rounded by thermal
activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication
in Phys.Rev.B, also availible at:
http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
Constrained Monte Carlo Method and Calculation of the Temperature Dependence of Magnetic Anisotropy
We introduce a constrained Monte Carlo method which allows us to traverse the
phase space of a classical spin system while fixing the magnetization
direction. Subsequently we show the method's capability to model the
temperature dependence of magnetic anisotropy, and for bulk uniaxial and cubic
anisotropies we recover the low-temperature Callen-Callen power laws in M. We
also calculate the temperature scaling of the 2-ion anisotropy in L10 FePt, and
recover the experimentally observed M^2.1 scaling. The method is newly applied
to evaluate the temperature dependent effective anisotropy in the presence of
the N'eel surface anisotropy in thin films with different easy axis
configurations. In systems having different surface and bulk easy axes, we show
the capability to model the temperature-induced reorientation transition. The
intrinsic surface anisotropy is found to follow a linear temperature behavior
in a large range of temperatures
Laser induced magnetization switching in films with perpendicular anisotropy: a comparison between measurements and a multi-macrospin model
Thermally-assisted ultra-fast magnetization reversal in a DC magnetic field
for magnetic multilayer thin films with perpendicular anisotropy has been
investigated in the time domain using femtosecond laser heating. The experiment
is set-up as an optically pumped stroboscopic Time Resolved Magneto-Optical
Kerr Effect magnetometer. It is observed that a modest laser fluence of about
0.3 mJ/square-cm induces switching of the magnetization in an applied field
much less than the DC coercivity (0.8 T) on the sub-nanosecond time-scale. This
switching was thermally-assisted by the energy from the femtosecond pump-pulse.
The experimental results are compared with a model based on the Landau
Lifschitz Bloch equation. The comparison supports a description of the reversal
process as an ultra-fast demagnetization and partial recovery followed by
slower thermally activated switching due to the spin system remaining at an
elevated temperature after the heating pulse.Comment: 8 pages, 10 figures, to be submitted to PR
Disordered Environments in Spatial Games
The Prisoner's dilemma is the main game theoretical framework in which the
onset and maintainance of cooperation in biological populations is studied. In
the spatial version of the model, we study the robustness of cooperation in
heterogeneous ecosystems in spatial evolutionary games by considering site
diluted lattices. The main result is that due to disorder, the fraction of
cooperators in the population is enhanced. Moreover, the system presents a
dynamical transition at , separating a region with spatial chaos from
one with localized, stable groups of cooperators.Comment: 6 pages, 5 figure
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Professional Sports Facilities, Teams and Property Values: Evidence from Seattle’s Key Arena
Professional sports teams and facilities can generate negative or positive amenities to be capitalized into nearby property prices. We investigate the effect of the departure of a National Basketball Association team, the Seattle SuperSonics, from Key Arena in Seattle in 2008 on nearby residential property values. The arena continued to operate after the team left, so this departure represents a natural experiment to identify the net effects of a sports team from the effect of a facility and other events that take place in the facility. Results from a repeat sale regression model indicate that the departure of the SuperSonics was associated with excess appreciation of condo prices near Key Arena, suggesting that the team generated disamenities in this market
Nulling Data Reduction and On-sky Performance of the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5–13 μm). In this paper, we focus on the mid-infrared (8–13 μm) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15–30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems
Dynamic approach for micromagnetics close to the Curie temperature
In conventional micromagnetism magnetic domain configurations are calculated
based on a continuum theory for the magnetization which is assumed to be of
constant length in time and space. Dynamics is usually described with the
Landau-Lifshitz-Gilbert (LLG) equation the stochastic variant of which includes
finite temperatures. Using simulation techniques with atomistic resolution we
show that this conventional micromagnetic approach fails for higher
temperatures since we find two effects which cannot be described in terms of
the LLG equation: i) an enhanced damping when approaching the Curie temperature
and, ii) a magnetization magnitude that is not constant in time. We show,
however, that both of these effects are naturally described by the
Landau-Lifshitz-Bloch equation which links the LLG equation with the theory of
critical phenomena and turns out to be a more realistic equation for
magnetization dynamics at elevated temperatures
- …