923 research outputs found

    Glass shell manufacturing in space

    Get PDF
    Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time

    Earth resources-regional transfer activity contracts review

    Get PDF
    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized

    Glass shell manufacturing in space

    Get PDF
    A heat transfer model was developed that mathematically describes the heating and calculates the thermal history of a gel particle in free-fall through the furnace. The model parameters that greatly affect the calculations were found to be gel particle mass, geometry, specific heat, and furnace gas. Empirical testing of the model has commenced. The code calculations and the initial empirical testing results both indicate that the gel-to-shell transformation occurs early and rapidly in the thermal history of the gel particle, and that for current work the heat transfer rate is not a limitation in shell production

    Evaluation of the Danish Aerospace Corporation Portable Pulmonary Function System

    Get PDF
    A research project designed to investigate changes in maximal oxygen consumption (VO2max) during and following long duration flight on the International Space Station (ISS) has recently been completed. The device used to measure VO2 on board ISS, the Portable Pulmonary Function System (PPFS) manufactured by the Danish Aerospace Corporation (DAC), is based on previous-generation devices manufactured by DAC, but the PPFS has not been validated for analyzing metabolic gases or measuring cardiac output (Qc). The purpose of the present evaluation is to compare PPFS metabolic gas analysis measurements to measurements obtained using a clinically-validated system (ParvoMedics TrueOne(c) 2400 system; Parvo). In addition, Qc data collected with the PPFS were compared to Qc measurements from echocardiography. METHODS: Ten subjects completed three cycle exercise tests to maximal exertion. The first test was conducted to determine each subject's VO2max and set the work rates for the second and third (comparison) tests. The protocol for the two comparison tests consisted of three 5-minute stages designed to elicit 25%, 50%, and 75% VO2max (based upon results from the initial test), followed by 1-minute stages of increasing work rate (25 watt/minute) until the subject reached maximal effort. During one of the two comparison tests, metabolic gases and Qc were assessed with the PPFS; metabolic gases and Qc were assessed with the Parvo and by echocardiography, respectively, during the other test. The order of the comparison tests was counterbalanced. VO2max and maximal work rate during the comparison tests were compared using t tests. Mixed-effects regression modeling was used to analyze submaximal data. RESULTS: All of the data were within normal physiological ranges. The PPFS-measured values for VO2max were 6% lower than values obtained with the Parvo (PPFS: 3.11 +/- 0.75 L/min; Parvo: 3.32 +/- 0.87 L/min; mean +/- standard deviation; P = 0.02); this difference is probably due to flow restriction imposed by the PPFS Qc accessories. Submaximal VO2 values were slightly lower when measured with the PPFS, although differences were not physiologically relevant. The PPFS-measured values of submaximal carbon dioxide production (VCO2) were lower than the data obtained from Parvo, which could be attributed to lower fractions of expired carbon dioxide measured by the PPFS. The PPFS Qc values tended to be lower than echocardiography-derived values. CONCLUSIONS: The results of the present study indicate a need to further examine the PPFS and to better quantify its reproducibility; however, none of the findings of the current evaluation indicate that the PPFS needs to be replaced or modified

    Reliability of the Danish Aerospace Corporation Portable Pulmonary Function System

    Get PDF
    Metabolic gas analysis is a critical component of investigations that measure cardio-pulmonary exercise responses during and after long-duration spaceflight. The primary purpose of the current study was to determine the reliability and intra-subject repeatability of a metabolic gas analysis device, the Portable Pulmonary Function System (PPFS), designed for use on the International Space Station (ISS). The second objective of this study was to directly compare PPFS measurements of expired oxygen and carbon dioxide (FEO2 and FECO2) to values obtained from a well-validated clinical metabolic gas analysis system (ParvoMedics TrueOne (c) [PM]). Eight subjects performed four peak cycle tests to maximal exertion. The first test was used to prescribe work rates for the subsequent test sessions. Metabolic gas analysis for this test was performed by the PM, but samples of FEO2 and FECO2 also were simultaneously collected for analysis by the PPFS. Subjects then performed three additional peak cycle tests, consisting of three 5-min stages designed to elicit 25%, 50%, and 75% maximal oxygen consumption (VO2max) followed by stepwise increases of 25 W/min until subjects reached volitional exhaustion. Metabolic gas analysis was performed using the PPFS for these tests. Intraclass correlation coefficients (ICC), within-subject standard deviations (WS SD), and coefficients of variation (CV%) were calculated for the repeated exercise tests. Mixed model regression analysis was used to compare paired FEO2 and FECO2 values obtained from the PPFS and the PM during the initial test. The ICC values for oxygen consumption (VO2), carbon dioxide production (VCO2), and ventilation (VE) indicate that the PPFS is highly reliable (0.79 to 0.99) for all exercise levels tested; however, ICCs for respiratory exchange ratio (RER) were low ( 0.11 - 0.51), indicating poor agreement between trials during submaximal and maximal exercise. Overall, CVs ranged from 1.6% to 6.7% for all measurements, a finding consistent with reported values that were obtained using other metabolic gas analysis techniques. The PPFS and PM produced comparable FEO2 data; however, there was less agreement between measures of FECO2 obtained from the two devices, particularly at lower CO2 concentrations. The PPFS appears, in practically all respects, to yield highly reliable metabolic gas analysis data. Lower reliability of RER measurements reported in the literature and likely is not a function of the PPFS device. Further examination of PPFS CO2 data is warranted to better understand the limitations of these PPFS measurements. Overall, the PPFS when used for repeated measures of cardio-pulmonary exercise should provide accurate and reliable data for studies of human adaptation to spaceflight

    Toward a Theory of Innovation

    Full text link
    The purpose of this article is to eliminate further conceptual obstacles to the develop ment of a workable theory of innovation and to move toward a better theoretic statement. The approach to overcoming the conceptual problems centers primarily around four ideas: (1) building a theory around the "innovation decision" as the unit of analysis, rather than either innovations or adopters: (2) lifting the level of general ity of independent variables so that a great deal of statistical interaction is avoided; (3) splitting the act of innovation into two stages, diffusion and adoption, to eliminate the confounding effects of time of awareness in studies of innovation; (4) introducing the idea of a "fair-trial point" into the conceptualization of innovation, solving sev eral additional problems at once.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68286/2/10.1177_009539977901000401.pd

    Do Interventions Designed to Support Shared Decision-Making Reduce Health Inequalities? : A Systematic Review and Meta-Analysis

    Get PDF
    Copyright: © 2014 Durand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Increasing patient engagement in healthcare has become a health policy priority. However, there has been concern that promoting supported shared decision-making could increase health inequalities. Objective: To evaluate the impact of SDM interventions on disadvantaged groups and health inequalities. Design: Systematic review and meta-analysis of randomised controlled trials and observational studies.Peer reviewe

    Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy

    Get PDF
    <p>Background: Statin therapy reduces the risk of occlusive vascular events, but uncertainty remains about potential effects on cancer. We sought to provide a detailed assessment of any effects on cancer of lowering LDL cholesterol (LDL-C) with a statin using individual patient records from 175,000 patients in 27 large-scale statin trials.</p> <p>Methods and Findings: Individual records of 134,537 participants in 22 randomised trials of statin versus control (median duration 4.8 years) and 39,612 participants in 5 trials of more intensive versus less intensive statin therapy (median duration 5.1 years) were obtained. Reducing LDL-C with a statin for about 5 years had no effect on newly diagnosed cancer or on death from such cancers in either the trials of statin versus control (cancer incidence: 3755 [1.4% per year [py]] versus 3738 [1.4% py], RR 1.00 [95% CI 0.96-1.05]; cancer mortality: 1365 [0.5% py] versus 1358 [0.5% py], RR 1.00 [95% CI 0.93–1.08]) or in the trials of more versus less statin (cancer incidence: 1466 [1.6% py] vs 1472 [1.6% py], RR 1.00 [95% CI 0.93–1.07]; cancer mortality: 447 [0.5% py] versus 481 [0.5% py], RR 0.93 [95% CI 0.82–1.06]). Moreover, there was no evidence of any effect of reducing LDL-C with statin therapy on cancer incidence or mortality at any of 23 individual categories of sites, with increasing years of treatment, for any individual statin, or in any given subgroup. In particular, among individuals with low baseline LDL-C (<2 mmol/L), there was no evidence that further LDL-C reduction (from about 1.7 to 1.3 mmol/L) increased cancer risk (381 [1.6% py] versus 408 [1.7% py]; RR 0.92 [99% CI 0.76–1.10]).</p> <p>Conclusions: In 27 randomised trials, a median of five years of statin therapy had no effect on the incidence of, or mortality from, any type of cancer (or the aggregate of all cancer).</p&gt
    • …
    corecore