27 research outputs found

    Mathematical modeling of laser lipolysis

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Design and Implementation Intelligent Adaptive Front-lighting System of Automobile using Digital Technology on Arduino Board

    Get PDF
    The automatic light AFS (Adaptive Front - Lighting System) is added to the capabilities of modern vehicles that will improve the safety of vehicle drivers and passengers traveling at night. A new architecture of the AFS has proposed in this paper. This architecture is powerful and intelligent using the PWM technique on ARDUINO Board replaces the old mechanical system based on stepper motors

    Daylight: What Makes a Difference

    Get PDF
    Light is necessary for vision; it enables us to sense and perceive our surroundings and in many direct and indirect ways, via eye and skin, affects our physiological and psychological health. The use of light in built environments has comfort, behavioural, economic and environmental consequences. Daylight has many particular benefits including excellent visual performance, permitting good eyesight, effective entrainment of the circadian system as well as a number of acute non-image forming effects and the important role of vitamin D production. Some human responses to daylight seem to be well defined whilst others require more research to be adequately understood. This paper presents an overview of current knowledge on how the characteristics of daylight play a role in fulfilling these and other functions often better than electric lighting as conventionally delivered

    Clinical Heterogeneity of Autosomal Recessive Spastic Paraplegias: Analysis of 106 Patients in 46 Families

    Get PDF
    Background Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive and predominant spasticity of the lower limbs, in which dominant, recessive, and X-linked forms have been described. While autosomal dominant HSP has been extensively studied, autosomal recessive HSP is less well known and is considered a rare condition. Objective To analyze the clinical presentation in a large group of patients with autosomal recessive HSP from Portugal and Algeria to define homogeneous groups that could serve as a guide for future molecular studies. Results Clinical features in 106 patients belonging to 46 Portuguese and Algerian families with autosomal recessive HSP are presented, as well as the results of molecular studies in 23 of these families. Five phenotypes are defined: (1) pure early-onset families, (2) pure late-onset families, (3) complex families with mental retardation, (4) complex families with mental retardation and peripheral neuropathy, and (5) complex families with cerebellar ataxia. Six additional families have specific complex presentations, each of which is unique in the present series. Pyramidal signs in the upper limbs and pes cavus are frequent findings, while pseudobulbar signs, including dysarthria, dysphagia, and brisk jaw jerks, are more frequent in the complex forms. The complex forms have a poorer prognosis, while pure forms, particularly those with early onset, are more benign. One Algerian pure early-onset kindred was linked to the locus on chromosome 8, previously reported in 4 Tunisian families. Two of the Portuguese kindreds with complex forms (one with mental retardation and the other associated with hypoplasia of the corpus callosum) showed linkage to the locus recently identified on chromosome 16. Conclusions Although autosomal recessive HSP represents a heterogeneous group of diseases, some phenotypes can be defined by analyzing a large group of patients. The fact that only one Algerian family was linked to chromosome 8 suggests that this is a rare localization even in kindreds with the same ethnic background. Linkage to chromosome 16 was found in 2 clinically diverse Portuguese kindreds, illustrating that this locus is also rare and may correspond to different phenotypes.This study was supported by Généthon, Paris, France; and 2 grants from the Portuguese Foundation for Science and Technology and the Portuguese Health Administration (projects STRDA/C/SAU/277/92 and PECS/C/SAU/219/95)

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma

    Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    Get PDF
    BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone

    Convergent evolution in social swallows (Aves: Hirundinidae)

    Get PDF
    Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well‐resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in‐flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.Using a bird family with diversity in social behavior, the swallows and martins (Hirundinidae), we examine how switches between social and nonsocial behavior influence morphological evolution. We find strong convergence in social swallow species to small body morphology, while solitary swallow species exhibit highly variable morphology. These results illustrate the importance of social behavior on morphological evolution. Photograph by Joel G. Jorgensen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136032/1/ece32641.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136032/2/ece32641_am.pd

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Design and Implementation of Pulse Width Modulation Using Hardware/Software MicroBlaze Soft-Core

    No full text
    This paper presents an embedded control application of clock frequency to control the pulse width of the output signals, implemented on field programmable get array. This control allows the creation of lines of Pulse-width modulation depending on the numbers of card outputs, without using   the specific "Timers /Counters" blocks; this method is effective to adjust the amount of power supplied to an electrical charge. The purpose of this work is to achieve a real time hardware implementation with higher performance in both size and speed. Performance of these design implemented in field programmable get array virtex5 card, and Signals displayed on an oscilloscope
    corecore