23 research outputs found

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Analysis of Trajectory Ontology Inference Complexity over Domain and Temporal Rules

    No full text
    International audienceCapture devices rise large scale trajectory data from moving objects. These devices use different technologies like global navigation satellite system (GNSS), wireless communication, radio-frequency identification (RFID), and other sensors. Huge trajectory data are available today. In this paper, we use an ontological data modeling approach to build a trajectory ontology from such large data. This ontology contains temporal concepts, so we map it to a temporal ontology. We present an implementation framework for declarative and imperative parts of ontology rules in a semantic data store. An inference mechanism is computed over these semantic data. The computational time and memory of the inference increases very rapidly as a function of the data size. For this reason, we propose a two-tier inference filters on data. The primary filter analyzes the trajectory data considering all the possible domain constraints. The analyzed data are considered as the first knowledge base. The secondary filter then computes the inference over the filtered trajectory data and yields to the final knowledge base, that the user can query

    Semantic Trajectories: A Survey from Modeling to Application

    No full text

    Temporal reasoning in trajectories using an ontological modelling approach

    No full text
    Nowadays, with growing use of location-aware, wirelessly connected, mobile devices, we can easily capture trajectories of mobile objects. To exploit these raw trajectories, we need to enhance them with semantic information. Several research fields are currently focusing on semantic trajectories to support inferences and queries to help users validate and discover more knowledge about mobile objects. The inference mechanism is needed for queries on semantic trajectories connected to other sources of information. Time and space knowledge are fundamental sources of information used by the inference operation on semantic trajectories. This article discusses new approach for inference mechanisms on semantic trajectories. The proposed solution is based on an ontological approach for modelling semantic trajectories integrating time concepts and rules. We present a case study with experiments, optimization and evaluation to show the complexity of inference and queries. Then, we introduce a refinement algorithm based on temporal neighbour to enhance temporal inference. The results show the positive impact of our propos al on reducing the complexity of the inference mechanism

    Contribution to the analysis of the predissociated rovibronic structure of the symmetric isotopomers 16O3 and 18O3 of ozone near 10,400 cm-1: 3A2(A20)

    No full text
    The absorption spectrum of ozone was Recorded at low temperatures (down to −135 °C) by high resolution Fourier transform spectrometry and intra cavity laser absorption spectroscopy (ICLAS) near 10,400 cm−1. A preliminary analysis of the rotational structure of the absorption spectra of 16O3 and 18O3 shows that this spectral region corresponds to a superposition of two different electronic transitions, one with a very broad rotational structure, showing for the first time the asymmetric stretching frequency mode ν3 of the electronic state 3A2, the other formed by a completely diffuse band, probably the 201 band of a new transition due to the triplet electronic state 3B2. Predissociation effects induce large broadening of the rotational lines for the transition centered at 10,473 cm−1 identified as the 302 band of the Image electronic transition. The rotational structure cannot be analyzed directly but instead the band contour method was used to confirm the symmetry of the transition and to estimate the spectroscopic constants for the 16O isotopomer. The origin of the band is at 10,473±3 cm−1 and the value of the 16O3(3A2) antisymmetric stretching frequency mode is equal to 460±2 cm−1. We believe that the diffuse band is due to the 3B2 state and is located at about 10,363±3 cm−1 for 16O3 and 10,354±3 cm−1 for 18O3. The isotopic rules confirm the different results obtained for 18O3 and 16O3
    corecore