56 research outputs found

    Models to explore the molecular function and regulation of AIRE

    Get PDF
    Mutations in the Autoimmune Regulator (AIRE) gene are responsible for Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED). Within the thymic medulla, AIRE regulates the expression of a large number of tissue-specific self-antigens (TSAs) and the recognisation of these TSAs by auto-reactive T-cells is a prerequisite step for thymic negative selection. APECED patients will therefore develop multi-organ autoimmune disease because of the defective role of AIRE in thymic negative selection. Aire-deficient mice also develop multi-organ autoimmune disease and in this review we will focus on how both animal and cellular models have been used to dissect biochemical function of AIRE/Aire which is an essential step toward the understanding disease pathogenesis

    Epigallocatechin-3 Gallate Inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and Reduces CD8 MKG2D Lymphocytes of Alopecia Areata Patients.

    Get PDF
    BACKGROUND: Alopecia areata (AA) is associated with Interferon- γ (IFN-γ) mediated T-lymphocyte dysfunction and increased circulating Interleukine-17 (IL-17) levels. Epigallocatechin-3-gallate (EGCG) specifically inhibits IFN-γ pathways and unlike Janus Kinase 1 and 2 (JAK1/JAK2) inhibitors (tofacitinib, ruxolitinib), EGCG is safer, more cost-effective, and is a topically active agent. Our objective is to test the mode of action of EGCG in vitro and ex vivo using HaCat, Jurkat cell lines, and peripheral blood mononuclear cells (PBMCs) of AA patients and healthy controls (HCs), respectively. METHODS: distribution of T helper cells (Th1, Th17), and cytotoxic cells (CD8) in PBMCs isolated from 30 AA patients and 30 HCs was investigated by flowcytomterty. In vitro treatment of HaCat and Jurkat cells with 40 μm EGCG for 48 h was performed to measure the level of phosphorylation of signal transducer and activator of transcription protein STAT1, and replicated in ex vivo model using PBMCs of AA patients. RESULTS: Interestingly, 40 μm EGCG is capable of completely inhibiting phosphorylation of STAT1 after 48 h in HaCat and Jurkat cells and ex vivo in PBMCs of AA patients. Based on QPCR data, the action of EGCG on p-STAT1 seems to be mediated via downregulation of the expression of JAK2 but not JAK1 leading to the inhibition of human leukocyte antigens (HLA-DR and HLA-B) expression probably via IRF-1. On the other hand, AA patients have significantly increased levels of Th1, Th17, and CD8 cells and the production of IFN-γ and IL-17 by PBMCs in AA patients was significantly higher compared to HC; p = 0.008 and p = 0.006, respectively. Total numbers of CD8+ cells were not significantly different between treated and untreated samples. However, CD8+ cells with positive Natural killer group 2 member D (NKG2D) transmembrane receptor (CD8+ NKG2D+ subset) was significantly reduced when PBMCs were treated with 20 μm EGCG for 48 h. CONCLUSION: These results suggest that EGCG has a synergistic action that inhibits expression of HLA-DR and HLA-B molecules via the IFN-γ pathway to maintain immune privilege in HF; also it reduces CD8+ NKG2D+ subset

    The AIRE-230Y Polymorphism Affects AIRE Transcriptional Activity: Potential Influence on AIRE Function in the Thymus

    Get PDF
    Background The autoimmune regulator (AIRE) is expressed in the thymus, particularly in thymic medullary epithelial cells (mTECs), and is required for the ectopic expression of a diverse range of peripheral tissue antigens by mTECs, facilitating their ability to perform negative selection of auto-reactive immature T-cells. The expression profile of peripheral tissue antigens is affected not only by AIRE deficiency but also with variation of AIRE activity in the thymus. Method and Results Therefore we screened 591bp upstream of the AIRE transcription start site including AIRE minimal promoter for single nucleotide polymorphism (SNPs) and identified two SNPs -655R (rs117557896) and -230Y (rs751032) respectively. To study the effect of these variations on AIRE promoter activity we generated a Flp-In host cell line which was stably transfected with a single copy of the reporter vector. Relative promoter activity was estimated by comparing the luciferase specific activity for lysates of the different reporter AIRE promoterreporter gene constructs including AIRE-655G AIRE-230C, AIRE-655G AIRE-230T and AIRE-655A AIRE-230C. The analysis showed that the commonest haplotype AIRE-655G AIRE-230C has the highest luciferase specific activity (p<0.001). Whereas AIRE-655G AIRE-230T has a luciferase specific activity value that approaches null. Both AIRE promoter polymorphic sites have one allele that forms a CpG methylation site which we determined can be methylated in methylation assays using the M.SssI CpG methyltransferase. Conclusion AIRE-230Y is in a conserved region of the promoter and is adjacent to a predicted WT1 transcription factor binding site, suggesting that AIRE-230Y affects AIRE expression by influencing the binding of biochemical factors to this region. Our findings show that AIRE655GAIRE-230T haplotype could dramatically alter AIRE transcription and so have an effect on the process of negative selection and affect susceptibility to autoimmune conditions

    Identification of single nucleotide variants in the Moroccan population by whole-genome sequencing

    Get PDF
    Background: Large-scale human sequencing projects have described around a hundred-million single nucleotide variants (SNVs). These studies have predominately involved individuals with European ancestry despite the fact that genetic diversity is expected to be highest in Africa where Homo sapiens evolved and has maintained a large population for the longest time. The African Genome Variation Project examined several African populations but these were all located south of the Sahara. Morocco is on the northwest coast of Africa and mostly lies north of the Sahara, which makes it very attractive for studying genetic diversity. The ancestry of present-day Moroccans is unknown and may be substantially different from Africans found South of the Sahara desert, Recent genomic data of Taforalt individuals in Eastern Morocco revealed 15,000-year-old modern humans and suggested that North African individuals may be genetically distinct from previously studied African populations. Results: We present SNVs discovered by whole genome sequencing (WGS) of three Moroccans. From a total of 5.9 million SNVs detected, over 200,000 were not identified by 1000G and were not in the extensive gnomAD database. We summarise the SNVs by genomic position, type of sequence gene context and effect on proteins encoded by the sequence. Analysis of the overall genomic information of the Moroccan individuals to individuals from 1000G supports the Moroccan population being distinct from both sub-Saharan African and European populations. Conclusions: We conclude that Moroccan samples are genetically distinct and lie in the middle of the previously observed cline between populations of European and African ancestry. WGS of Moroccan individuals can identify a large number of novel SNVs and aid in functional characterisation of the genome

    Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRβ-chain, which highlights the immunopathological aspect of the disease

    Get PDF
    Alopecia areata (AA) is a hair loss disorder resulting from an autoimmune reaction against hair follicles. T-helper 1 cells are a major contributor to this disorder, but little is known about the role of T-regulatory cells (Tregs) in AA. Here, we analysed the distribution of circulating Treg subsets in twenty AA patients with active hair loss and fifteen healthy subjects by flow cytometry. The Treg suppressor HLA-DR+ subpopulation was significantly reduced in the patients (P<0.001) and there were significantly fewer cells expressing CD39 among the CD4+CD25+Foxp3+ Treg subpopulation in patients (P = 0.001). FOXP3 CD39 Treg cells were also reduced in hair follicles; by 75% in non-lesional skin and 90% in lesional skin, when compared to control healthy skin. To further characterise Treg cells in AA; Tregs (CD4+CD25+FOXP3+) were investigated for their TCRβ sequence. PCR products analysed by Next Generation Sequencing techniques, showed that all frequent public clonotypes in AA Tregs were also present in controls at relatively similar frequencies, excepting two public clonotypes: CATSRDEGGLDEKLFF (V15 D1 J1-4) and CASRDGTGPSNYGYTF (V2 D1 J1-2), which were exclusively present in controls. This suggests that these Treg clonotypes may have a protective effect and that they may be an exciting subject for future therapeutic applications

    Whole genome sequencing in an acrodermatitis enteropathica family from the Middle East.

    Get PDF
    We report a family from Tabuk, Saudi Arabia, previously screened for Acrodermatitis Enteropathica (AE), in which two siblings presented with typical features of acral dermatitis and a pustular eruption but differing severity. Affected members of our family carry a rare genetic variant, p.Gly512Trp in the SLC39A4 gene which encodes a zinc transporter; disease is thought to result from zinc deficiency. Similar mutations have been reported previously; however, the variable severity within cases carrying the p.Gly512Trp variant and in AE overall led us to hypothesise that additional genetic modifiers may be contributing to the disease phenotype. Therefore whole genome sequencing was carried out in five family members, for whom material was available to search for additional modifiers of AE; this included one individual with clinically diagnosed AE. We confirmed that the p.Gly512Trp change in SLC39A4 was the only candidate homozygous change which was sufficiently rare (ExAC allele frequency 1.178e-05) and predicted deleterious (CADD score 35) to be attributable as a fully penetrant cause of AE. To identify other genes which may carry relevant genetic variation, we reviewed the relevant literature and databases including Gene Ontology Consortium, GeneMANIA, GeneCards, and MalaCards to identify zinc transporter genes and possible interacting partners. The affected individual carried variants in RECQL4 and GPAA1 genes with ExAC allele frequency 10. p.Gly512Trp is highly likely to be the pathogenic variant in this family. This variant was previously detected in a Tunisian proband with perfect genotype-phenotype segregation suggestive of pathogenicity. Further research is required in this area due to small sample size, but attention should be given to RECQL4 and GPAA1 to understand their role in the skin disease

    Association between AIRE gene polymorphism and rheumatoid arthritis: a systematic review and meta-analysis of case-control studies.

    Get PDF
    Autoimmune regulator (AIRE) is a transcription factor that functions as a novel player in immunological investigations. In the thymus, it has a pivotal role in the negative selection of naive T-cells during central tolerance. Experimental studies have shown that single nucleotide polymorphism (SNP) alters transcription of the AIRE gene. SNPs thereby provide a less efficient negative selection, propagate higher survival of autoimmune T-cells, and elevate susceptibility to autoimmune diseases. To date, only rheumatoid arthritis (RA) has been analysed by epidemiological investigations in relation to SNPs in AIRE. In our meta-analysis, we sought to encompass case-control studies and confirm that the association between SNP occurrence and RA. After robust searches of Embase, PubMed, Cochrane Library, and Web of Science databases, we found 19 articles that included five independent studies. Out of 11 polymorphisms, two (rs2075876, rs760426) were common in the five case-control studies. Thus, we performed a meta-analysis for rs2075876 (7145 cases and 8579 controls) and rs760426 (6696 cases and 8164 controls). Our results prove that rs2075876 and rs760426 are significantly associated with an increased risk of RA in allelic, dominant, recessive, codominant heterozygous, and codominant homozygous genetic models. These findings are primarily based on data from Asian populations

    Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP

    Get PDF
    We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P3.0E-04, odds ratio (OR)1.60; meta-P for rs38069333.1E-03), XBP1 (rs6005863, P3.6E-04, OR1.17; meta-P for rs22695779.5E-09), and FOXP3 (rs11798415, P5.8E-04, OR1.19). Association of GV with CTLA4 (rs12992492, P5.9E-05, OR1.20; meta-P for rs2317751.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions
    corecore