633 research outputs found

    GRB 030329: 3 years of radio afterglow monitoring

    Full text link
    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant Metrewave Radio Telescope (GMRT). Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as investigate the jet nature of the relativistic outflow. Further, by modeling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241, proceedings of the Royal Society Scientific Discussion Meeting, London, September 200

    iPTF15eqv: Multi-wavelength Expos\'e of a Peculiar Calcium-rich Transient

    Full text link
    The progenitor systems of the class of "Ca-rich transients" is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multi-wavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and Type Ib/c supernovae. iPTF15eqv has among the highest [Ca II]/[O I] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a < 10 solar mass star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment (n<n < 0.1 cm3^{-3}) within a radius of 1017\sim 10^{17} cm. Chandra X-ray Observatory observations rule out alternative scenarios involving tidal disruption of a white dwarf by a black hole, for masses > 100 solar masses). Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from white dwarf progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.Comment: 24 pages, 16 figures. Closely matches version published in The Astrophysical Journa

    Interaction Between The Broad-lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    Get PDF
    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.Comment: 6 pages, 3 figures, accepted for publication in ApJ

    Detailed study of the GRB 030329 radio afterglow deep into the non-relativistic phase

    Get PDF
    We explore the physics behind one of the brightest radio afterglows ever, GRB 030329, at late times when the jet is non-relativistic. We determine the physical parameters of the blast wave and its surroundings, in particular the index of the electron energy distribution, the energy of the blast wave, and the density (structure) of the circumburst medium. We then compare our results with those from image size measurements. We observed the GRB 030329 radio afterglow with the Westerbork Synthesis Radio Telescope and the Giant Metrewave Radio Telescope at frequencies from 325 MHz to 8.4 GHz, spanning a time range of 268-1128 days after the burst. We modeled all the available radio data and derived the physical parameters. The index of the electron energy distribution is p=2.1, the circumburst medium is homogeneous, and the transition to the non-relativistic phase happens at t_NR ~ 80 days. The energy of the blast wave and density of the surrounding medium are comparable to previous findings. Our findings indicate that the blast wave is roughly spherical at t_NR, and they agree with the implications from the VLBI studies of image size evolution. It is not clear from the presented dataset whether we have seen emission from the counter jet or not. We predict that the Low Frequency Array will be able to observe the afterglow of GRB 030329 and many other radio afterglows, constraining the physics of the blast wave during its non-relativistic phase even further.Comment: 9 pages, 2 figures; accepted for publication in Astronomy & Astrophysics after minor revisions; small changes in GMRT fluxes at 1280 MH

    The dark nature of GRB 051022 and its host galaxy

    Get PDF
    We present multiwavelength (X-ray/optical/near-infrared/millimetre) observations of GRB 051022 between 2.5 hours and ~1.15 yr after the event. It is the most intense gamma-ray burst (~ 10^-4 erg cm^-2) detected by HETE-2, with the exception of the nearby GRB 030329. Optical and near infrared observations did not detect the afterglow despite a strong afterglow at X-ray wavelengths. Millimetre observations at Plateau de Bure (PdB) detected a source and a flare, confirming the association of this event with a moderately bright (R = 21.5) galaxy. Spectroscopic observations of this galaxy show strong [O II], Hbeta and [O III] emission lines at a redshift of 0.809. The spectral energy distribution of the galaxy implies Av (rest frame) = 1.0 and a starburst occuring ~ 25 Myr ago, during which the star-forming-rate reached >= 25 Msun/yr. In conjunction with the spatial extent (~ 1'') it suggests a very luminous (Mv = - 21.8) blue compact galaxy, for which we also find with Z Zsun. The X-ray spectrum shows evidence of considerable absorption by neutral gas with NH, X-ray = 3.47(+0.48/-0.47) x 10^22 cm^-2 (rest frame). Absorption by dust in the host galaxy at z = 0.809 certainly cannot account for the non-detection of the optical afterglow, unless the dust-to-gas ratio is quite different than that seen in our Galaxy (i.e. large dust grains). It is likely that the afterglow of the dark GRB 051022 was extinguished along the line of sight by an obscured, dense star forming region in a molecular cloud within the parent host galaxy. This galaxy is different from most GRB hosts being brighter than L* by a factor of 3. We have also derived a SFR ~ 50 Msun/yr and predict that this host galaxy will be detected at sub-mm wavelengths.Comment: 7 Pages, 7 figures. Accepted in Astronomy and Astrophysic

    Interaction Between the Broad-Lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    Get PDF
    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad- lined Type Ic supernova SN2012ap that exhibit changes in equivalent width over short (. 30 days) timescales. The 4428 A and 6283 A DIB features get weaker with time, whereas the 5780 A feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers
    corecore