We explore the physics behind one of the brightest radio afterglows ever, GRB
030329, at late times when the jet is non-relativistic. We determine the
physical parameters of the blast wave and its surroundings, in particular the
index of the electron energy distribution, the energy of the blast wave, and
the density (structure) of the circumburst medium. We then compare our results
with those from image size measurements. We observed the GRB 030329 radio
afterglow with the Westerbork Synthesis Radio Telescope and the Giant Metrewave
Radio Telescope at frequencies from 325 MHz to 8.4 GHz, spanning a time range
of 268-1128 days after the burst. We modeled all the available radio data and
derived the physical parameters. The index of the electron energy distribution
is p=2.1, the circumburst medium is homogeneous, and the transition to the
non-relativistic phase happens at t_NR ~ 80 days. The energy of the blast wave
and density of the surrounding medium are comparable to previous findings. Our
findings indicate that the blast wave is roughly spherical at t_NR, and they
agree with the implications from the VLBI studies of image size evolution. It
is not clear from the presented dataset whether we have seen emission from the
counter jet or not. We predict that the Low Frequency Array will be able to
observe the afterglow of GRB 030329 and many other radio afterglows,
constraining the physics of the blast wave during its non-relativistic phase
even further.Comment: 9 pages, 2 figures; accepted for publication in Astronomy &
Astrophysics after minor revisions; small changes in GMRT fluxes at 1280 MH