1,986 research outputs found
The Organs of the Parietal Fossa in Elasmobranchs
Davidson, in a paper on the musculature of Heptanchus maculatus (1918), mentions a small shield-shaped organ to be found in the parietal fossa, and in connection with it a pair of small muscles having their origin on the cranium and dorsal longitudinal muscles. He believes that these muscles constrict this sac-like organ
A Large-Diameter Hollow-Shaft Cryogenic Motor Based on a Superconducting Magnetic Bearing for Millimeter-Wave Polarimetry
In this paper we present the design and measured performance of a novel
cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is
tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a
HWP is rapidly rotated in front of a polarization analyzer or
polarization-sensitive detector. This polarimetry technique is commonly used in
cosmic microwave background (CMB) polarization studies. The SMB we use is
composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous
neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor
because the HWP is ultimately installed in the rotor. The motor presented here
has a 100 mm diameter rotor aperture. However, the design can be scaled up to
rotor aperture diameters of approximately 500 mm. Our motor system is composed
of four primary subsystems: (i) the rotor assembly, which includes the NdFeB
ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an
incremental encoder, and (iv) the drive electronics. While the YBCO is cooling
through its superconducting transition, the rotor is held above the stator by a
novel hold and release mechanism (HRM). The encoder subsystem consists of a
custom-built encoder disk read out by two fiber optic readout sensors. For the
demonstration described in this paper, we ran the motor at 50 K and tested
rotation frequencies up to approximately 10 Hz. The feedback system was able to
stabilize the the rotation speed to approximately 0.4%, and the measured rotor
orientation angle uncertainty is less than 0.15 deg. Lower temperature
operation will require additional development activities, which we will
discuss
Sucker Control in Burley and Dark Tobaccos
Removing the tops of tobacco plants removes the dominant influence of the terminal shoot over lateral shoots or suckers. If left unchecked, suckers can severely reduce yield and quality of tobacco. Manual control of suckers has almost totally given way to less expensive and more efficient chemical control. Three types of chemical sprays for controlling sucker growth on tobacco plants are: Systemic--These chemicals are absorbed by plants and move inside the plant to active growth sites,
Contact--These chemicals are not absorbed by plants and must be used so as to contact the suckers directly.
Local systemic--This chemical runs down the stalk and is absorbed by the suckers.
Topping times and application methods for the 3 types of chemicals differ and are discussed separately
Recommended from our members
Summer 1976
The Superintendents\u27s Obligation (page 3) Farm Machinery Noise can Damage Hearing (9) Back and Beyond (10) Tolerance to Benzimidazole-Derivative Fungacides by Fusarium Roseum on Kentucky Bluegrass Turf (13) Biological Pest Control Gaining Acceptance (16) Compare Fertilizer Values Before Buying (18) UMass Turfgrass Research Fund (19
Functional inaccessibility of quiescent herpes simplex virus genomes
BACKGROUND: Newly delivered herpes simplex virus genomes are subject to repression during the early stages of infection of human fibroblasts. This host defence strategy can limit virus replication and lead to long-term persistence of quiescent viral genomes. The viral immediate-early protein ICP0 acts to negate this negative regulation, thereby facilitating the onset of the viral replication cycle. Although few mechanistic details are available, the host repression machinery has been proposed to assemble the viral genome into a globally inaccessible configuration analogous to heterochromatin, blocking access to most or all trans-acting factors. The strongest evidence for this hypothesis is that ICP0-deficient virus is unable to reactivate quiescent viral genomes, despite its ability to undergo productive infection given a sufficiently high multiplicity of infection. However, recent studies have shown that quiescent infection induces a potent antiviral state, and that ICP0 plays a key role in disarming such host antiviral responses. These findings raise the possibility that cells containing quiescent viral genomes may be refractory to superinfection by ICP0-deficient virus, potentially providing an alternative explanation for the inability of such viruses to trigger reactivation. We therefore asked if ICP0-deficient virus is capable of replicating in cells that contain quiescent viral genomes. RESULTS: We found that ICP0-deficient herpes simplex virus is able to infect quiescently infected cells, leading to expression and replication of the superinfecting viral genome. Despite this productive infection, the resident quiescent viral genome was neither expressed nor replicated, unless ICP0 was provided in trans. CONCLUSION: These data document that quiescent HSV genomes fail to respond to the virally modified host transcriptional apparatus or viral DNA replication machinery provided in trans by productive HSV infection in the absence of ICP0. These results point to global repression as the basis for HSV genome quiescence, and indicate that ICP0 induces reactivation by overcoming this global barrier to the access of trans-acting factors
Toolbox for analyzing finite two-state trajectories
In many experiments, the aim is to deduce an underlying multi-substate on-off
kinetic scheme (KS) from the statistical properties of a two-state trajectory.
However, the mapping of a KS into a two-state trajectory leads to the loss of
information about the KS, and so, in many cases, more than one KS can be
associated with the data. We recently showed that the optimal way to solve this
problem is to use canonical forms of reduced dimensions (RD). RD forms are
on-off networks with connections only between substates of different states,
where the connections can have non-exponential waiting time probability density
functions (WT-PDFs). In theory, only a single RD form can be associated with
the data. To utilize RD forms in the analysis of the data, a RD form should be
associated with the data. Here, we give a toolbox for building a RD form from a
finite two-state trajectory. The methods in the toolbox are based on known
statistical methods in data analysis, combined with statistical methods and
numerical algorithms designed specifically for the current problem. Our toolbox
is self-contained - it builds a mechanism based only on the information it
extracts from the data, and its implementation on the data is fast (analyzing a
10^6 cycle trajectory from a thirty-parameter mechanism takes a couple of hours
on a PC with a 2.66 GHz processor). The toolbox is automated and is freely
available for academic research upon electronic request
Application of ERTS-1 imagery to state wide land information system in Minnesota
There are no author-identified significant results in this report
- …