We present the results of a feasibility study, which examined deployment of a
ground-based millimeter-wave polarimeter, tailored for observing the cosmic
microwave background (CMB), to Isi Station in Greenland. The instrument for
this study is based on lumped-element kinetic inductance detectors (LEKIDs) and
an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The
telescope is mounted inside the receiver and cooled to <4 K by a
closed-cycle 4He refrigerator to reduce background loading on the detectors.
Linearly polarized signals from the sky are modulated with a metal-mesh
half-wave plate that is rotated at the aperture stop of the telescope with a
hollow-shaft motor based on a superconducting magnetic bearing. The modular
detector array design includes at least 2300 LEKIDs, and it can be configured
for spectral bands centered on 150~GHz or greater. Our study considered
configurations for observing in spectral bands centered on 150, 210 and
267~GHz. The entire polarimeter is mounted on a commercial precision rotary air
bearing, which allows fast azimuth scan speeds with negligible vibration and
mechanical wear over time. A slip ring provides power to the instrument,
enabling circular scans (360 degrees of continuous rotation). This mount, when
combined with sky rotation and the latitude of the observation site, produces a
hypotrochoid scan pattern, which yields excellent cross-linking and enables
34\% of the sky to be observed using a range of constant elevation scans. This
scan pattern and sky coverage combined with the beam size (15~arcmin at
150~GHz) makes the instrument sensitive to 5<ℓ<1000 in the angular
power spectra