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In many experiments, the aim is to deduce an underlying multisubstate on-off kinetic scheme �KS� from the
statistical properties of a two-state trajectory. However, a two-state trajectory that is generated from an on-off
KS contains only partial information about the KS, and so, in many cases, more than one KS can be associated
with the data. We recently showed that the optimal way to solve this problem is to use canonical forms of
reduced dimensions �RDs�. RD forms are on-off networks with connections only between substates of different
states, where the connections can have nonexponential waiting time probability density functions �WT-PDFs�.
In theory, only a single RD form can be associated with the data. To utilize RD forms in the analysis of the
data, a RD form should be associated with the data. Here, we give a toolbox for building a RD form from a
finite time, noiseless, two-state trajectory. The methods in the toolbox are based on known statistical methods
in data analysis, combined with statistical methods and numerical algorithms designed specifically for the
current problem. Our toolbox is self-contained—it builds a mechanism based only on the information it
extracts from the data, and its implementation is fast �analyzing a 106 cycle trajectory from a 30-parameter
mechanism takes a couple of hours on a PC with a 2.66 GHz processor�. The toolbox is automated and is freely
available for academic research upon electronic request.
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I. INTRODUCTION

Finding an underlying mechanism from a binary time se-
ries �Fig. 1� is a problem that appears in many fields in
physical chemistry and biophysics �1–33�, ranging from
studies on the photophysical properties of nanocrystals
�21–27�, studies on the structural changes and the activity
of single biopolymers and small organic molecules
�7–20,28–31�, to numerical studies of complex systems, e.g.,
protein folding and reactions �32,33�. In many cases, the un-
derlying mechanism is �assumed to be� a multisubstate on-
off Markovian kinetic scheme �KS� �34–36�; examples for
KSs are shown in Fig. 2: the KSs are 2A, 2C, 2E. �In this
paper, we call the KS by the figure it is shown in.� That is,
we assume that the mechanism is a network with a frozen
connectivity. The network can be of any size with any kind
of wiring �e.g., irreversible transitions are also allowed�. The
assumption that the true underlying mechanism that gener-
ates the data is a KS is the only assumption made here. It is
the assumption that is usually made in the interpretation of
binary trajectories. For example, in single enzyme kinetics
experiments �19,37�, the network represents the space of the
conformations of the enzyme and the reaction pathways. In
translocation of molecules through channels �3,38–45�, the
network represents the propagating molecule through the
channel and the effect of the environment on the transloca-
tion.

The connection between the underlying mechanism and
the experiment is as follows: each substate in the network
has a unique observable value that belongs to one of the two
states �defined as the on state and the off state�. The observed
two-state trajectory is generated by the random walk in the
on-off KS, in which only transitions between substates of
different states are explicitly observed. �Here, we also call
the binary time series a two-state trajectory, or just a trajec-
tory. The periods in the trajectory are also called events or
waiting times.�

Simulating the data from a KS is straightforward; how-
ever, deducing the underlying multisubstate KS that gener-
ated the data is, almost always, not possible, even when
“analyzing” an infinitely long trajectory, because the projec-
tion of the multidimensional KS onto the two-dimensional
data leads to a loss of information about the structure of the
underlying KS, so two, or several, KSs can lead to identical
trajectories in a statistical sense �46–52�. The best strategy to
deal with this situation is to use canonical forms �46–52�. A
given KS is mapped into a single canonical form, but many
KSs can be mapped to the same canonical form. �This cor-
respondence of many KSs to a single canonical form is a
quantification of the concept stating that a single two-state
trajectory does not �almost always� contain all the informa-
tion about the on-off KS that generated it.� The canonical
form should be built from the data.

Recently, we have found a map of KSs into new canonical
forms, which we called reduced dimensions �RD� forms
�52�. A RD form is an on-off network with connections only
between substates of different states. A RD form has the
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FIG. 1. �Color online� A trajectory of an observable that fluctu-
ates between two values, on and off, as a function of time. Such a
trajectory is commonly obtained from single molecule experiments.
In this paper, the data is described by a random walk in an on-off
KS, or its conjugated RD form. Kinetic Monte Carlo simulations
are used to generate the data by a computer. This trajectory was
generated by the mapped KS 3. The numerical values for the tran-
sitions rates are specified in Tables I and IV.
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simplest topology that can generate the data, namely, it has
the minimal number of substates that can generate the data.
The numbers of on and off substates in the RD form are
determined by the ranks of the two-dimensional �2D� waiting
time probability density functions �WT-PDFs� of successive
events, �x,y�t1 , t2�, x ,y=on,off �52,53�. The price for having
the simplest possible topology is complex WT-PDFs for the
connections in the RD form, �x,ij�t� for connecting substates
jx→ iy: these WT-PDFs are almost always multiexponentials
in contrast to the single exponential WT-PDFs for connecting
substates in KSs. RD forms have many advantages over the
previously suggested canonical forms �for on-off KSs�
�46,47,51�. Two of these advantages are �i� the ability of RD
forms to represent any KS, i.e., also KSs with symmetry
�symmetry means, for example, that the spectrum of a WT-
PDF for single periods on or off is degenerate� and irrevers-
ible transitions can be mapped into RD forms, and �ii� the
use of RD forms as an efficient tool, more efficient than
other existing tools, in discriminating between KSs by ana-
lyzing the topology of the KSs. For example, the RD forms
of KSs 2A, 2C, and 2E, shown in Figs. 2�b�, 2�d�, and 2�f�,
respectively, are all distinct, so their conjugate KSs can be
discriminated by the analysis of the data. An elaborated dis-
cussion regarding the theoretical mapping of KSs into RD
forms and the utilities of RD forms are given in Refs.
�52,53�. This paper focuses on the construction of the RD
form from finite data, and is complementary to the theory
involving RD forms and on-off KSs presented in �52,53�.

There is a vast literature dealing with the analysis
�34–36,38–52,54–84� and the modeling �85–103� of experi-
mental and theoretical two-state trajectories. However, none
of the existing methods are designed to build a canonical
form directly from a two-state trajectory. So, these works do
not deal with several difficulties that arise when analyzing
the data with canonical forms. In fact, many authors ignore
main problems in analyzing time series by assuming that a
substantial amount of information is already given to begin
with. In this paper, we give a toolbox for the direct construc-
tion of the RD form from a finite, noiseless, two-state trajec-
tory. To do so, we introduce several unique techniques in the
analysis of the data, which are combined with known statis-
tical methods in data analysis and numerical algorithms
�38–45,58–84�. Among the important quantities that are ex-
tracted from the data and are unique to this toolbox are the
matrices �x,y that appear in the expansion of the �x,y�t1 , t2�
and the ranks of these matrices �which are estimated inde-

pendently�. An important concept in the basis of our toolbox
finds from the data the optimal initial conditions for the
mechanism-dependent optimization in the last step of the
analysis. Accurate initiations of optimization routines are
crucial to the success of the analysis, because the
mechanism-dependent optimization always finds the nearest
minimum in a very rugged parameter space. Our toolbox
succeeded much better than existing methods in a set of
cases we tested, and we attribute this mainly to our way of
initiating the optimization subroutines. The toolbox pre-
sented in this paper is automated �MATLAB codes�. The tool-
box is freely available for academic research upon electronic
request.

We emphasize that although our toolbox analyzes noise-
less trajectories, noise filtration techniques can be applied on
the raw data before using our toolbox. Filtering the noise in
the data is a challenge specific to the way the experiment is
done �see Refs. �54,37� for examples on filtering noisy pho-
ton trajectories�, but after “cleaning” the noisy signal, the
researcher faces the problem of analyzing a noiseless trajec-
tory. This is when our toolbox is useful.

We also note that after extracting the RD form from the
data, one can associate a bunch of KSs with the found RD
form by using the theory of RD forms and on-off KSs
�52,53�. Such a list of KSs may be partial, but can help in
understanding the studied process. This step is independent
of the analysis presented here.

This paper is organized as follows: Sec. II introduces the
reduced dimensions forms. It gives a brief summary of the
results of �52,53�, and is given here for readers that are not
familiar with the theory of RD forms and on-off KSs. Sec-
tion III gives the actual toolbox to extract the canonical form
from the data. We demonstrate our approach by generating
the data from a particular KS �KS 3� and by analyzing it with
our toolbox. The toolbox reconstructed the RD form’s topol-
ogy and the parameter values extracted by the toolbox are
within 10% �on average� of the actual parameters. We note
that this is not the only case analyzed by our toolbox that
gave good results; three more tests were performed, and the
accuracy of the results was, at least, the same as the one
reported in this paper �we present the KS with the most com-
plex topology among the tested KSs�. The toolbox is pre-
sented in three subsections; each subsection executes a dif-
ferent part of the toolbox. The various parts of the toolbox
are connected to each other in the last step of the analysis,
which compiles the intermediate results and finds the RD
form. Mathematical discussion in the main text is brief, but
is given in the appendixes. Section IV summaries our results.

II. REDUCED DIMENSIONS FORMS

This section introduces the canonical forms of reduced
dimensions. The section gives mainly a descriptive discus-
sion, where the mathematical theory of reduced dimension
forms and on-off KSs is given in �52,53�.

For the following discussion, it is important to express the
�x,y�t1 , t2�’s as expansion of exponentials. ��x,y�t1 , t2� is built
from the data by constructing the histogram of the intersec-
tion of successive x followed by y events.� The most general
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FIG. 2. �Color online� A set of KSs with only reversible transi-
tions, �A�, �C�, and �E�, and the corresponding RD forms, �B�, �D�,
and �F�. Although the KSs are very similar, their corresponding RD
forms emphasize the differences between these KSs.
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mathematical description of the WT-PDF �x,y�t1 , t2� that is
constructed from a two-state trajectory generated by a KS is
given by �35,36,46–52�

�x,y�t1,t2� = �
i=1

Lx

�
j=1

Ly

�x,y,ije
−�x,it1−�y,jt2. �1�

Here, we use the matrix of amplitudes, �x,y, the sets of rates,
��x� and ��y�, and the expansion lengths, Lx, and Ly. From
Eq. �1�, we can construct almost any quantity of interest. For
example, integrating over t2 leads to

�x�t� = �
i=1

Lx

cx,ie
−�x,it, �2�

with, cx,i=� j=1
Ly �x,y,ij /�y,j. Here, �x�t� is the WT-PDF of the x

durations in the data. Note that although the above ampli-
tudes and rates can be expressed as a function of the transi-
tion rates of the underlying KS �35,36,46–52�, for the dis-
cussion below and the analysis presented in the next section,
these relationships are not useful. The reason is that RD
forms are built directly from the matrices �x,y and the rates
��x� and ��y�.

Description of RD forms and some examples. RD forms
are on-off networks with connections only between substates
of different states �2B, 2D, and 2F�. The topology of the RD
form, i.e., the number of substates in the network, is the
simplest topology that can reproduce the data. The tradeoff is
that the WT-PDFs for the connections in the RD form are
�usually� multiexponentials, in contrast to a Markovian un-
derlying KS that has only single exponential WT-PDFs for
the connections. The topology of a RD form is determined
by the ranks, Rx,y’s, of the corresponding �x,y�t1 , t2�’s. For
discrete time, �x,y�t1 , t2� is a matrix with a rank Rx,y. Rx,y is,
in fact, the rank of �x,y. For nonsymmetric KSs, Rx,y for x
�y is the number of substates in state y in the RD form. The
WT-PDFs for the connections in the RD form, denoted by
�x,ji�t� for connecting substates ix→ jy, are determined by the
mapping procedure of a KS into a RD form �52�. Here, we
note that �x,ji�t� is a weighted sum of exponentials with rates,
��x�, and as many as Lx components,

�x,ji�t� = �
k=1

Lx

�x,jkie
−�x,kt.

It is straightforward to get the amplitudes, �x,jki’s, and the
rates numerically, by mapping a KS into a RD form �52�.
�The mapping of on-off KSs into RD forms is based on the
path representation of the �x,y�t1 , t2�’s �52�.� Estimating the
amplitudes and rates from the data is a much harder task. Our
toolbox presented in Sec. III is designed to find the RD form
from finite binary data. Last, we note that RD forms are
canonical forms in the sense that only one RD form can be
constructed from an infinitely long two-state trajectory, and
this RD form contains all the information in the two-state
trajectory. RD forms are canonical forms of KSs because a
given KS is mapped to a unique RD form.

The simplest topology for a RD form �2B� has one sub-
state in each of the states, namely, Rx,y =1 �x ,y=on,off�.
Therefore �x,11�t�=�x�t�. For a two by two RD form �2D�,

e.g., when Rx,y =2, x ,y=on,off, there are as many as four
different �x,ji�t�’s for each value of x. In general, for a RD
form with LRD,x substates in state x, there are as many as
2LRD,onLRD,of f different WT-PDFs for the connections in the
RD form.

The basic utilities of RD forms include �i� A RD form has
the simplest topology that can reproduce the data. �ii� The
topology of the RD form is obtained from the data without
fitting. �iii� RD forms can represent KSs with symmetry and
irreversible transitions because these canonical forms are
built from all four Rx,y’s. �d� RD forms constitute a conve-
nient and powerful tool, a much more powerful tool than
other methods, for discriminating among on-off KSs.

For an elaborated discussion on the mapping of KSs into
RD forms and the other utilities of RD forms, see �52,53�.

III. TOOLBOX FOR BUILDING THE RD FORM
FROM FINITE DATA

This section outlines our toolbox for a direct construction
of the RD form from a finite, noiseless trajectory. The con-
cepts behind the toolbox and the methods of analysis are
discussed in the main text. Complementary mathematical de-
tails and statistical significance tests are given in Appendixes
A–C. Our toolbox executes a four-step algorithm:

�i� Estimation of the spectrum and amplitudes of the
�x�t�’s using fitting procedures.

�ii� Determination of the number of substates in the RD
form from the estimated ranks of the �x,y�t1 , t2�’s.

�iii� Estimation of the matrices �x,y’s in the exponential
expansion of the �x,y�t1 , t2�’s.

�iv� Determination of the RD form. The starting point is a
low resolution RD form, which is built from the information
collected in the first stages of the analysis. This step deter-
mines the pre-exponential coefficients of the WT-PDFs for
the connections in the RD form by an optimization proce-
dure. The optimization subroutine uses the matrices �x,y’s,
and the rates ��on� and ��of f�.

Our toolbox is based on unique techniques that give the
matrices �x,y’s, estimate the rank of the �x,y�t1 , t2�’s, and per-
form the first mechanism-dependent optimization step as a
root-search problem that doesn’t use the data directly. To the
best of our knowledge, none of these techniques were used
before in the analysis of two-state trajectories, but, here,
were proven crucial for the success of the analysis, i.e., con-
structing a reliable canonical form of reduced dimensions.

The toolbox presented in this section together with its
accompanied appendixes give efficient methods for carrying
out the above algorithmic steps. Each step in the above al-
gorithm solves a problem that is a challenge on its own, but,
importantly, the methods and intermediate results are com-
bined in self-contained codes to give the final output of an
optimal RD form that can be associated with the input two-
state trajectory.

To present the course of the analysis, we apply the tool-
box on the data generated by KS 3 �see Fig. 3�. This KS has
two loops and two irreversible transitions. We also impose
symmetry in the KS: the splitting probabilities obey p2on2of f
= p2on1of f

and p1on2of f
= p1on1of f

, where the splitting probability
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pij is defined by pij =kij /�ikij, and kij connects substates j to
i. The corresponding canonical form’s topology of KS 3 is
RD form 2D. The particular RD from of KS 3 has four
bi-exponential and four single exponential WT-PDFs for the
connections: �on,11�t� and �on,21�t� are single-peaked WT-
PDFs with two components and are proportional to each
other, �on,12�t� and �on,22�t� are both single-component WT-
PDFs, but are not proportional. For the off state, �of f ,11�t�
and �of f,21�t� are proportional WT-PDFs with two compo-
nents, and �of f,12�t� and �of f,22�t� are proportional WT-PDFs
with one component. �Table IV gives the numerical values
for the expansion parameters for all the �x,ij�t�’s.� KS 3 and
its corresponding RD form are complex enough to serve as a
good test for our toolbox. We use a 106 event trajectory,
which is a typical size trajectory from ion-channel record-
ings.

A. The WT-PDFs of the single events

The first stage in the analysis of a two-state trajectory
constructs the WT-PDF of state x �=on,off�, �x�t�, by build-
ing the histogram from the x periods of the trajectory. �x�t�
gives basic information about the dynamics and the KS, de-
duced by finding its functional form. For a Markovian KS,
�x�t� is a sum of exponentials, �x�t�=�i=1

Lx cx,ie
−�x,it, so the

functional form of �x�t� is completely determined by speci-
fying the cx,i’s and the �x,i’s. The spectrum ��x� of �x�t� is
the same spectrum of the WT-PDFs for the connections in
the RD form, and the number of exponentials in �x�t�, Lx,
estimates the number of substates in state x in the underlying
KS.

There is a vast literature on estimating the coefficients and
rates in an exponential expansion of an experimental curve
�60–70�. We have developed a method based on the Padé
approximation approach �62–66,70�, but our method also di-
rectly maximizes a mechanism-free likelihood function. �In
this paper, we use the term “mechanism-free optimization”
for cases in which the optimization is not related to a KS or
to a RD form.� The method is robust numerically, and esti-
mates not just the cx,i’s and the �x,i’s but also the optimal Lx.
The details of the subroutine are given in appendix A.

Figure 4 shows the �x�t�’s obtained from a trajectory of
106 on-off events generated by KS 3. Also shown are the
analytical curves and the curves found by our subroutine.
The subroutine found the correct number of components in
both fits. Table I gives the numerical values of the parameters
found by the subroutine and the corresponding analytical
values. Although �on�t� has a fairly complicated shape, both
the fitting amplitudes and fitting rates are within 5% of the
analytical values. The fit for �of f�t� yields good results also,
but here the maximal error �occurring in the smallest rate and
its conjugated amplitude� is about 20%. �The error can be
reduced by enlarging the data set.�

B. Degree of correlations in the 2D histograms
and the matrices �x,y

The next two algorithmic steps in the toolbox estimate the
degree of correlations between successive events and the ma-
trices �x,y’s. This information, together with the rates ��on�
and ��of f� found in the first step of the analysis, enables
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FIG. 3. �Color online� An irreversible transition KS with three
off substates and four on substates. This is a rank 2 KS, with a
corresponding RD form in Fig. 2�d�.
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FIG. 4. �Color online� �on�t� �A� and �of f�t� �B� for a 106 event
trajectory generated by KS 3, on ln-ln scale. Shown are the experi-
mentally constructed curves �circles� and the analytical and the fit-
ting curves which practically overlap. The fitting curves are found
by our subroutine for exponential fit.

TABLE I. The analytical and fit amplitudes and rates in the exponential expansion of �on�t� and
�of f�t�.

�on�t� �of f�t�

�con�theory ��on�theory �con� fit ��on� fit �cof f�theory ��of f�theory �cof f� fit ��of f� fit

0.2924 3.5 0.3053 3.510 0.7280 2 0.745 2.060

−0.0670 0.5 −0.0707 0.489 0.1112 0.2 0.1136 0.205

0.0670 0.1 0.0713 0.104 0.00160 0.02 0.0020 0.0240

0.0038 0.01 0.0036 0.0099
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building a low-resolution RD form, and to initialize properly
the mechanism-dependent optimization in the last step of the
analysis. Constructing the matrices �x,y and the Rx,y is unique
for our toolbox.

The degree of correlations between the x event followed
by the y event is the rank Rx,y of �x,y�t1 , t2�. When Rx,y =1,
the data are not correlated, and for Rx,y �1 there are correla-
tions between events in the data of order Rx,y. The order of
the correlations is the minimal number of 2D functions
needed to expand, �x,y�t1 , t2�. Because this expansion is
some kind of a linear decomposition of �x,y�t1 , t2�, the rank
Rx,y can be obtained by any kind of linear decomposition; so
the number of nonzero eigenvalues in a standard linear de-
composition of the matrix �x,y�t1 , t2� is Rx,y. �Note that these
eigenvalues are not the ��x�.� When dealing with finite data,
the rank Rx,y is not easily determined; one cannot simply
analyze the spectrum of the experimental �x,y�t1 , t2�, because
this spectrum contains more nonzero entries than the rank of
the noiseless �x,y�t1 , t2�. As a result, it is useful to begin with
an analysis that finds whether or not events are correlated,
because this information is easily obtained from the finite
data with a high degree of certainty. Section III B 1 gives six
different methods for determining whether correlations be-
tween events exist in the data. These methods are fast
�implementation takes a couple of seconds for a 106 event
trajectory from a 15-parameter KS�, but depending on the
data’s properties �e.g., length, complexity, pattern of correla-
tions�, different approaches are more suitable than others for
given data.

The analysis in section III B 1 also obtains the matrices
�x,y’s. These matrices are used in the mechanism-dependent
optimization procedure in the last step of the construction of
the RD form from the data. The construction of the matrices
�x,y is unique for our toolbox.

Section III B 2 gives the method that estimates the Rx,y
values, which are only applied on nonrenewal data, namely,
when the trajectory shows correlations between successive
events �otherwise, all ranks equal unity, i.e., Rx,y =1 for all
four combinations of x and y�.

1. Determining the existence or lack of correlations
in the data and the matrices �x,y’s

In this subsection, six ways to detect correlations between
events in the trajectory are introduced. Different techniques
are useful in analyzing different data types, but none of these
demand a direct construction of the 2D histograms. Two of
these techniques construct special single-argument WT-PDFs
from successive events. It is shown that these special WT-
PDFs contain all the information necessary to build the ma-
trices �x,y’s. The six methods for detecting correlation in the
data are described and applied on numerical trajectory gen-
erated by KS 3. Mathematical discussion and statistical sig-
nificance tests needed for implementing the methods in a
routine are given in Appendix B.

�a� A simple way to detect correlations between events in
the data analyzes the trajectory of waiting times plotted ver-
tically as a function of the occurrence index �48,81,37�; see
Fig. 5�a�. This trajectory is called the ordered waiting times

trajectory. Ways to analyze the ordered waiting times trajec-
tory are given below.

�a.1� For some cases, correlations between successive
events can be easily detected visually in the ordered waiting
times trajectory �48,81,37�. This happens when waiting times
of similar duration are grouped, but different groups have
very different average durations.

�a.2� The correlation function of the ordered waiting
times trajectory can be calculated �17,36,81,37�, �txty�m�	
= 1

Ntra−m�i=1
Ntra−mtx,ity,i+m, where tz,j is the jth event in state z and

Ntra is the number of cycles in the trajectory. The data are
correlated when this correlation function is not the Kro-
necker delta �0m. However, this correlation function is not
always useful, and in some cases can lead to false-negative
results �81�. There are �at least� two reasons for this behavior.
First, note that the argument of the correlation function of the
ordered waiting times trajectory represents the distance, in
number of events, between the two events in the 2D WT-
PDFs, so its argument is an integer and its value at a given
integer is the first moment of the corresponding 2D WT-PDF
�36,81�. Now, because the statistics of 2D WT-PDFs of dis-
tant �i.e., not successive� events are not accurately obtained
from finite trajectories, the correlation function of the or-
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FIG. 5. �A� �Color online� The ordered waiting time trajectory.
The x �=on,off� waiting times are normalized such that the maxi-
mal time in the shown interval is unity �this is denoted by the start
symbol�. Observed in this figure are off-off correlations. �B� The
off-off correlation functions for both the actual data �stars� and the
randomized data �diamonds�, as a function of the distance between
events, m. Also shown are the error bars as continuous curves.
Distinguishing between these correlation functions becomes hard
even in its second argument values, because the error bars overlap.
�C� Moments of successive on-on events as a function of the mo-
ment’s order, o. Again, shown are both the results for the actual data
�upper points� and the randomized data �lower points�, and its cor-
responding error bars as continuous curves �shown are only the
lower error curve for the actual data and the upper error curve for
the randomized data�. Here, distinguishing between the results from
the randomized and the actual data is straightforward even for large
values of the power, o.
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dered waiting times trajectory is noisy even for small argu-
ment values. The second reason that causes this correlation
function to fail involves specific situations of data made of
short correlated events combined with long uncorrelated
events.

�a.3� Instead of looking on the correlation function of the
ordered waiting time trajectory, the statistics of the 2D WT-
PDF of successive events can be calculated. For example, the
moments of �x,y�t1 , t2�, �t1,x

m t2,y
n 	 �n, m�−1�, can be com-

puted directly from the ordered waiting times trajectory and
compared with the moments of the product �x�t1��y�t2�,
�tx

m	�ty
n	 �48�, which are also computed directly from the data.

When �t1,x
m t2,y

n 	� �tx
m	�ty

n	, the data are correlated. This tech-
nique may be more robust than the correlation function in
�a.2�, because it probes only the properties of �x,y�t1 , t2�.
However, it can also fail for small data sets, and for data sets
made of short correlated events combined with long uncor-
related events �81�.

�a.4� The correlation function of the on-off trajectory is
computed directly from the data and is compared with the
correlation function of a renewal process. The latter correla-
tion function is obtained from the experimental �on�t� and
�of f�t� �37�, or from the randomized data. �Here, by random-
ized data we mean a time series in which the waiting times in
the original trajectory are randomly permutated, such that the
obtained trajectory is a renewal process.� If there are signifi-
cant differences between the two correlation functions, the
data are correlated. Although this method also answers
whether the data are correlated or not, it does not analyze the
ordered waiting times trajectory, and so it is heavier compu-
tationally relative to the methods �a.1�–�a.3�. �The trajectory
value at each time increment enters in these calculations,
rather than the random durations.�

Techniques �a.1�–�a.3� were applied to the data generated
from the KS 3. The ordered waiting time trajectory �Fig.
5�a�� shows the typical signature for correlations, here off-off
correlations, as bunching of successive short events followed
by bunching of successive long events. The event correlation
function for off-off events supports this conclusion �Fig.
5�b��. The moment analysis is applied on on-on events, and
indicates on correlations between on-on events �Fig. 5�c��.
Note that visual inspection of the ordered waiting time tra-
jectory is not as sensitive as the event correlation function
and the moment analysis, but can be useful when dealing
with small data sets. Additionally, it is evident from the error
bars in Figs. 5�b� and 5�c� that the event correlation function
becomes noisier much faster �with the distance between
events� relative to the moments of a 2D histogram of succes-
sive events �with the moments’ order�.

As a technical note we emphasize that to use the above
methods in a routine �for example the moment analysis�, one
must define a significance level for evaluating the results. A
way to define a significance level assumes Poissonian noise
in the moment values with the trajectory’s length, and com-
pares the results obtained from the data with the results ob-
tained from the randomized data. In Appendix B, we give the
details of the analysis used in our routine.

�b� A different approach for detecting correlations be-
tween events in finite data builds special single-argument
WT-PDFs. These WT-PDFs represent sums �of different

functions� of the successive periods. When comparing such a
special WT-PDF with a similar WT-PDF that is calculated
from the randomized data, it is easy to determine whether the
data are correlated or not by a visual inspection. �Only when
the two different WT-PDFs are statistically equivalent are the
data uncorrelated; see Fig. 6 for examples.� These special
WT-PDFs are more robust than the techniques in �a.1�–�a.3�
for detecting correlations between events �81� �the reasons
are given below�. Importantly, we have developed a method
that uses the information contained in these special WT-
PDFs to build the matrices �x,y’s. This method is spelled out
in this subsection. We emphasize that the matrices �x,y’s are
crucial to the successes of the analysis and are unique to this
toolbox, namely, it is shown here how to extract these ma-
trices from the on-off time series.

�b.1� Consider the WT-PDF obtained from the data by
building the histogram of the random waiting time that is a
sum of successive waiting times, �ti= tx,i+ ty,�x,y+i�i=1

Ntra−�x,y,
where tz,j is the jth event in state z and Ntra is the number of
cycles in the trajectory. We call this WT-PDF the binned
successive WT-PDF, and is denoted by �x+y�t�. �x+y�t� is
built from all available data points, has a single argument,
and is related only to the PDF of successive periods. These
three points make �x+y�t� more robust than the methods de-
scribed in �a� for detecting correlations in the data. �x+y�t� is
defined by

�x+y�t� = 

0

	 

0

	

��t − �t1 + t2���x,y�t1,t2�dt1dt2. �3�

�x+y�t� is compared with the convolution of �x�t� and �y�t�,
denoted by �x�t�*�y�t�, which is obtained from the data by
performing the same procedure defined above for �x+y�t� af-
ter randomizing the data, or by a numerical integration. The
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FIG. 6. �Color online� �A� The binned successive WT-PDFs for
on-off events �lower curve�, and the same WT-PDF from the ran-
domized data. The fit for the randomized data is obtained from the
amplitudes and rates of the �x�t�’s. Two fit curves are shown for the
actual data �blue and red, online�, which overlap almost perfectly
with each other and with the experimental curve. These curves are
obtained from the direct fitting using our exponential-fit subroutine,
and by further translating the found coefficients into the �on+of f’s.
�B� ���of f +�on�2�t� for the randomized data �upper curve� and the
actual data. The fit for the randomized data is based on the ampli-
tudes and rates of the �x�t�’s. The fits for the actual data are found
from direct fitting, and by further translating the found coefficients
into the matrix �on,of f’s. Here, also, both fit curves overlap with
each other and with the experimental curve.
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convolution �x�t�*�y�t� is expressed analytically by replac-
ing �x,y�t1 , t2� in the integrand in Eq. �3� with �x�t1��y�t2�.
For the example discussed here, Fig. 6�a� shows the strength
of the comparison method of PDFs relative to methods in
�a�: the two curves corresponding to �on+of f�t� and
�on�t�*�of f�t� are so different, and therefore it is straightfor-
ward to determine that the data are correlated �on-off corre-
lations�.

Going back to Eq. �3� and integrating over one variable
leads to

�x+y�t� = 

0

t

�x,y�t − 
,
�d
 ,

because �x,y�t1 , t2� with negative arguments is zero. Thus
�x+y�t� is obtained by integrating over a straight line in the
2D plane that intersects the axes in �0, t� and �t ,0�. As a
result, for small t, �x+y�t� probes correlations only between
short periods. For large t, �x+y�t� probes correlations between
long periods, as well as correlations between long-short pe-
riods. This makes �x+y�t� a good method for detecting corre-
lations between short successive events in data that also have
long uncorrelated periods, a scenario that can fail the tech-
niques presented in �a�.

�x+y�t� can be used for detecting correlations between
successive events in a trajectory generated from any mecha-
nism. This simple test does not require knowing the func-
tional form of �x+y�t�. However, the actual functional form
of �x+y�t� is important for finding the matrices �x,y. For tra-
jectories from KSs, we can express �x+y�t� by inserting
�x,y�t1 , t2� in Eq. �1� into the integral representation of
�x+y�t� in Eq. �3�. Integration gives

�x+y�t� = �
i,j

�x,y,ij�e−�x,it − e−�y,jt�/��y,j − �x,i� . �4�

When analyzing the data, it is important to know how many
different terms are contained in �x+y�t�. It is easily seen that
Eq. �4� expresses �x+y�t� as a weighted sum of Lon+Lof f ex-
ponentials by rewriting Eq. �4� in the form

�x+y�t� = �
i=1

Lx

�x+y,ie
−�x,it + �

j=1

Ly

�x+y,je
−�y,jt, �5�

where �x+y,i=� j=1
Ly �x,y,ij / ��y,j −�x,i� and �x+y,j

=�i=1
Lx �x,y,ij / ��x,i−�y,j�. �Note that the first sum involves

summation over the columns of �x,y, but the second sum is
done over its rows; namely, the transpose relation exists be-
tween the two sums. We keep this distinction implicit in
notation.� Using Eq. �5�, we can recover the �x+y,i’s from an
experimentally obtained �x+y�t�. To get the amplitudes of
�x+y�t�, we use the exponential fit command presented in
Sec. III A. We automated the construction of the exponential
expansion of �x+y�t� from a trajectory. Appendix B 2 dis-
cusses possible difficulties and their solutions when building
the �x+y,i’s from the data. �This appendix also uses the �x+y’s
for finding the matrices �x,y.� The results for the construction
of the �x+y’s, x�y, from the trajectory of KS 3 are given in
Table II, and the corresponding WT-PDFs are shown in Fig.

6�a�. In the end of the next subsection we discuss these re-
sults.

�b.2� Another special single-argument WT-PDF is the his-
togram of the random time that is the sum of the square root
of successive periods, ��ti=�tx,i+�ty,�x,y+i�i=1

Ntra−�x,y. This func-
tion is defined by

��x+�y��t� = 

0

	 

0

	

�„�t − ��t1 + �t2�…�x,y�t1,t2�dt1dt2.

�6�

We call functions of the type of ��x+�y��t� the generalized-
binned successive WT-PDF because it is a generalization of
�x+y�t�, which involves a linear sum of successive events, to
any sum of nonlinear functions of the successive events.
��x+�y��t� is compared with a function obtained by replacing
�x,y�t1 , t2� with �x�t1��y�t2� in Eq. �6�, and is constructed
from the data by performing the same operation defined
above for ��x+�y��t� after randomizing the data, or by a nu-
merical integration. Using the data, two generalized-binned
successive WT-PDFs, obtained from the data and the ran-
domized data for off-on events, are shown in Fig. 6�b�. The
differences between the two curves are apparent, meaning
that off-on events are correlated.

Going back to the integral representation of ��x+�y��t� and
performing the integration over the delta function leads to

��x+�y��t� = 2

0

t

��t − �
��x,y„��t − �
�2,
…d
 , �7�

and can be written as

��x+�y��t� = 4t3/2

0

1

z�1 − z��x,y„t�1 − z�2,tz2
…dz . �8�

Namely, ��x+�y��t� is obtained by integrating over curved
lines, y�x�= �t1/2−x1/2�2, in the 2D plane. This enables detect-
ing correlations between successive waiting times along the
axes more efficiently than �x+y�t�. Note that the generalized
binned successive WT-PDF in Eqs. �6�–�8�, is a particular
example of a family of WT-PDFs obtained by integrating the
2D WT-PDFs with the delta function, ��t�− t1

�− t2
��. Simple

TABLE II. The analytical and fit amplitudes in the exponential
expansion of �on+of f�t� and �of f+on�t�.

�on+of f�t� �of f+on�t�

��on+of f�theory ��on+of f� fit ��of f+on�theory ��of f+on� fit

−9.70e−1

−1.04e−2

2.45e−1

1.21e−2

1.00

−1.89e−1

6.03e−3

−1.00

−8.38e−2

2.84e−1

1.10e−2

9.98e−1

−2.27e−1

2.32e−3

9.83e−1

−5.85e−1

−1.82e−3

−1.00

1.07e−1

4.80e−1

1.73e−2

9.98e−1

−6.46e−1

−4.77e−3

−1.00

1.25e−1

5.31e−1

1.47e−2
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analysis shows that all the important information can be ex-
tracted from the ��x+�y��t�’s.

The last part of this subsection presents the method that
uses ��x+�y��t�’s for estimating the matrices �x,y. First, we
express ��x+�y��t� for an underlying KS as

��x+�y��t� = 4t3/2�
i,j

�x,y,ije
−�x,i�y,jt/��x,i+�y,j�Iij�t� , �9�

where Iij�t�=�0
1z�1−z�e−rijt�z − lij�

2
dz with rij =�x,i+�y,j and lij

=�y,j /rij. The method for estimating the sigma matrices uses
fitting procedures and for this it is more convenient to work
with a related quantity, ���x + �y�2�t� / �2t�, rather than with Eq.
�9�,

���x + �y�2�t�

2t
= �

i=1

Lx

�
j=1

Ly

�x,y,ije
−�x,i�y,jt/��x,i+�y,j�Iij�t� , �10�

because it has a larger density of points than ��x+�y��t�.
���x + �y�2�t� is built from random times obtained by squaring
the sum of the square root of successive events, i.e., �ti

= ��tx,i+�ty,�x,y+i�2�i=1
Ntra−�x,y. Note that �x+y�t� contains up to

Lon+Lof f detectable terms, but ���x + �y�2�t� / �2t�, and the re-
lated quantity, ��x+�y��t� / �4t3/2�, contains up to LonLof f de-
tectable terms, so the latter PDF gives, in principle, more
information on the �x,y,ij’s than the former.

To find the �x,y,ij’s, we need to fit ���x + �y�2�t� / �2t� and use
Eq. �10�. The exponential fit subroutine of Sec. III A cannot
be used to recover the �x,y,ij’s from Eq. �10� because the
Iij�t�’s depend on t. However, by an asymptotic short time
expansion to the first order of the exponent in Iij�t�, Eq. �10�
can be approximated as

���x + �y�2�t�

t/3

 �

i=1

Lx

�
j=1

Ly

�x,y,ije
−0.3t��x,i+�y,j�,

valid when t��x,i+�y,j��1 for every i and j. In the subrou-
tine that estimates the matrix �x,y, we first fit the asymptotic
expansion of ���x + �y�2�t� / �2t� to a sum of exponentials. Such
a fit provides only a partial estimation of the �x,y,ij’s. To
proceed, we designed a numerical algorithm that builds a
matrix from the cx’s, the �x+y’s, and the fit amplitudes of
���x + �y�2�t� / �2t�, and uses a singular value decomposition to
estimate all the elements in the matrix �x,y. This estimation is
then used as an initial condition in a mechanism-free maxi-
mum likelihood procedure with constraints to get the final
estimation for the �x,y,ij’s. The object likelihood function is
constructed from Eq. �1�. The constraints are built from the
coefficients cx’s and the �x+y’s, and by demanding the posi-
tivity of the WT-PDF. Appendix B 2 gives additional details,
and discusses difficulties and their solutions in estimating the
�x,y,ij’s from the data.

�on+of f�t� and ���of f + �on�2�t� are constructed from the data
generated by KS 3, and are plotted in Figs. 6�a� and 6�b�,
respectively. Each WT-PDF is compared with the result of
the randomized data. In both cases, the fit curves for the
randomized data �upper curves� are obtained from the param-
eters of the �x�t�’s. There are two fit curves for each of
the actual WT-PDFs �lower curves�: in both cases, one fit
curve is found by the exponential fit subroutine, where the

second fit curve is obtained by constructing the �on+of f’s for
�on+of f�t� and the matrix �of f,on for ���of f + �on�2�t�. In both
cases, the fit curves coincide with each other and with the
data. Table II gives the analytical and fit parameters for the
�on+of f�t� and �of f+on�t�. The mean error, for both �x+y’s is
about 20%, excluding the amplitude with the largest error.
For both �x+y’s, the largest error occurs in the smallest am-
plitude and is about a factor of 2.5. Table III gives the ana-
lytical and fit amplitudes for �x,y’s. The coincidence is satis-
factory: the average error is 40% for �on,of f and 26% for
�of f,on. We note that there are solutions for the �x,y’s that can
reproduce �x+y�t� but not ���x + �y�2�t�. �The subroutine for
obtaining the �x,y’s produces an ensemble of possible solu-
tions and chooses the best among them; see Appendix B for
details.�

Thus the role of the �x+y�t�’s and ��x+�y��t�’s in our rou-
tine is twofold: not just that these WT-PDFs indicate, very
efficiently, whether the data are correlated or not, these WT-
PDFs are also used to construct the �x,y,ij’s. The way to con-
struct these matrices from the data is unique to our toolbox.
These matrices are essential for a reliable estimation of the
coefficients of the WT-PDFs for the connections in the RD
form.

2. Finding the ranks of the 2D histograms

The methods described in Sec. III B 1 can detect correla-
tions between events in the data. When correlations between
events are found, the ranks of the 2D histograms should be
estimated �no correlations between events means that all the
ranks equal unity�. A method that estimates the exact degree
of the correlation between successive events is presented in
this subsection, and it is based on the analysis given in Refs.
�52,71,72� �the problem of rank estimation of a 2D histogram
is closely related to problems that arise in the field of signal
reconstruction from noisy data, e.g., voice and image recon-

TABLE III. The theoretical and fit matrices �x,y’s, x�y. Here,
the matrix �x,y is written as a vector of the columns of �x,y put one
on top of the other �the entries of the last column of �x,y are the last
entries in this vector�.

���on+�on�2�t� ���of f +�on�2�t�

�on,of f
theory �on,of f

fit �of f,on
theory �of f,on

fit

1.00

−1.54e−1

1.54e−1

0.00

0.00

−9.15e−3

9.15e−3

1.59e−3

2.20e−3

−3.38e−4

3.38e−4

0.00

1.00

−1.59e−1

1.55e−1

1.94e−4

−9.72e−3

−1.21e−2

1.18e−2

1.37e−3

3.93e−3

−8.34e−5

1.96e−4

−2.35e−6

1.00

3.35e−2

2.20e−3

−4.36e−2

−3.03e−2

−9.56e−5

4.36e−2

3.03e−2

9.56e−5

1.30e−2

4.37e−4

2.86e−5

1.00

3.20e−2

1.93e−3

−3.49e−2

−3.16e−2

−5.70e−4

5.25e−2

3.47e−2

3.95e−5

1.38e−2

4.13e−4

2.01e−5
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struction, and some of the above references are related to
these problems.� We note that, mathematically, the rank of
�x,y is the rank of the corresponding �x,y�t1 , t2�. However,
statistical errors in �x,y cannot be corrected, and can lead to
wrong conclusions. The best way to deduce the topology of
the RD form is by estimating the rank of the 2D histograms
directly from the data, and a method of doing this is pre-
sented in this subsection.

We start by constructing cumulative 2D histograms. A
cumulative PDF, �x,y�t1 , t2 ;C1�, of a PDF �x,y�t1 , t2�
���x,y�t1 , t2 ;C0��, is defined by

�x,y�T1,T2;C1� = 

0

T1 

0

T2

�x,y�t1,t2�dt1dt2.

The generalization to higher order cumulative PDFs natu-
rally follows:

�x,y�T1,T2;Cn� = 

0

T1 

0

T2

�x,y�t1,t2;Cn−1�dt1dt2.

A cumulative two-dimensional PDF reduces the noise in the
original WT-PDF, but also preserves the rank of the original
PDF. �This can be seen by using the path representation of
Eq. �1� �52�.� For each 2D WT-PDF and its first three cumu-
lative PDFs, we obtain the spectrum of singular values and
plot the ratio of successive singular values as a function of
the order of the large singular value in the ratio. This plot
should show large values for signal ratios and a constant
value of about a unity for noise ratios. Also, noise singular
values must be small enough �71�. This second demand
forces us to work with the second order cumulative WT-PDF,
rather than the first order one. The bin size used to construct
the two-dimensional PDFs is found by demanding that the
randomized-data two-dimensional PDFs are rank 1, a pre-
liminary procedure that was found crucial for the success of
the rank estimation method.

To define a threshold that separates signal from noise ra-
tios, we rely on small perturbations around the analytical 2D
WT-PDF, and estimate the threshold value, for our problem,
to lie in the range 5–7 with probability 0.99. This threshold is
obtained from the bounds for the largest noise singular value
in the perturbed matrix, given small enough noise level �71�.
�The upper bound on the largest noise singular value equals
the size of the matrix times the standard deviation in the
noise level, and must be smaller than the smallest singular
value in the unperturbed matrix.� This estimation for the
threshold yields accurate results when working with the sec-
ond order cumulative 2D WT-PDF. In Appendix B 3, addi-
tional technical details of the analysis used in our routine are
given, with a discussion regarding the above numerical val-
ues.

The rank-estimation method is applied on the data gener-
ated by KS 3. Figures 7�a� and 7�b� show the singular ratios
of �of f,on�t1 , t2� and �on,of f�t1 , t2�, respectively. In both cases,
a large drop at the third singular ratio is observed when
working with the second order cumulative WT-PDF singular.
This indicates a rank 2 matrix. �Similar results were obtained
for �on,on�t1 , t2� and �of f,of f�t1 , t2�.�

We note that variation in the rank values around the found
values can be considered in cases where this method gives
results that are not “sharp” enough. If this leads also to a
change in the topology of the RD form, the analysis of Sec.
III C can be performed for each of the possible RD forms.
We choose among these RD forms using information criteria.

The translation of the estimated Rx,y’s into the number of
substates in the RD form, usually relies on the equality,
LRD,y =max�Rx,y ;Ry,y� �x�y�, unless a particular same event
rank is the largest among all ranks, and in such a case, this
rank determines the number of substates in both states in the
RD form. A complete table that translates any combination
of relative ranks values into RD form’s topology is given in
�53�.

C. The WT-PDFs for the connections in the RD form

The final stage in the direct construction of the RD form
from the data uses the information found in Secs. III A and
III B in an algorithm that estimates the amplitudes of the
�x,ji�t�’s. For a Markovian underlying KS, �x,ji�t� is given by

�x,ji�t� = �
k=1

Lx

�x,jkie
−�x,kt; i = 1, . . . ,LRD,x, j = 1, . . . ,LRD,y .

�11�

At this stage, LRD,on and LRD,of f are known from the analysis
in Sec. III B. The �x,i’s and Lx’s are known from the analysis
in Sec. III A. Equation �11� introduces �Lon
+Lof f�LRD,onLRD,of f coefficients �z,jki’s, z=on,off. We denote
the parameter space by �, �= ��on ;�of f�. The RD form is
determined once � is determined.

We estimate the �x,jki’s in a two-step subroutine. The full
details are given in Appendix C, and here we briefly sketch
these two steps.

�i� We produce a set of initial coefficients, denoted by
�
on ;
of f�. The set �
on ;
of f� is found by iterative calcula-
tions with constraints and a random updating role. The equa-
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FIG. 7. �Color online� Ratios of successive singular values from
�of f,on�t1 , t2� and its first three cumulative PDFs �A�, and
�on,of f�t1 , t2� and its first three cumulative PDFs �B�. The labels, 0,
1, 2, 3, refer to the order “n” of the cumulative WT-PDF,
�x,y�t1 , t2 ;Cn�. The actual cutoff is 5.6; see Appendix B for details.
In both panels, shown are the results from the third ratio further,
where the values for the second ratios are written on the left �the
first ratios are much larger than the second ratios�. In both cases, the
second order cumulative WT-PDFs give the correct answer of a
rank 2 matrix.
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tions for updating the �
on ;
of f� �Eqs. �C7�–�C9�� are de-
rived by demanding that the experimentally found cx,i’s and
�x,y,ji’s are recovered from the RD form. The constraints in
the iterations demand that all the WT-PDFs are non-negative,
�x,ji�t��0, for every relevant value of t, and every i, j, and x.
For the current problem, the non-negativity condition on a
given �x,ji�t� immediately means that �x,ji�t� can be normal-
ized, � j�0

	�x,ji�t�dt=1, such that 0��0
	�x,ji�t�dt�1. The it-

erative subroutine runs for ��Lon+Lof f�LRD,onLRD,of f�2 rounds,
and the best result is recovered.

�ii� The result from the first stage �i� is subject to an
optimization subroutine that minimizes the differences be-
tween the data-obtained cx,i’s and �x,y,ji’s and their RD form
values, defined, respectively, as, �x,i and �x,y,ji. This optimi-
zation is phrased as a root-search problem. The analytical
derivatives of the target function are used. The constraints in
this optimization subroutine are similar to those of the itera-
tive scheme, but are phrased as demands on the moments of
the �x,ji�t�’s: �0

	�x,ij�t�tmdt�0 with �i�0
	�x,ij�t�dt=1 for ev-

ery j, and x. �Usually we take two values for m, m=0 and
m=3.�

The above two-step subroutine is performed many times,
because the optimization always finds the nearest minimum,
in a very rugged parameter space. We note that this two-step
subroutine does not use the data directly, but only the infor-
mation derived from it, stored in the cx,i’s and �x,i’s and the
�x,y,ij’s. However, a subsequent optimization can minimize
minus log likelihood using the data. The target function is a
sum of the four �x,y�t1 , t2�’s built from the RD form, and is
initialized by the set ��on ;�of f�. Such a second optimization
may improve the results when the �x,y,ij’s are relatively noisy
�as can be deduced by an error analysis using the
���x + �y�2�t�’s.�

Table IV gives the final results for the ��on ;�of f� obtained
from the routine, and compares it to the analytical results.
The values for the experimental ��on ;�of f� are within 7% for
��on�, and 17% for ��of f�, of their analytical values, exclud-
ing zeros. Zeros are harder to detect. Figure 8 compares the
obtained ���x + �y�2�t� from the model to the analytical results.

The fits are satisfactory. In fact, all the fit curves coincide
with the analytical curves. This remarkable coincidence
means that all the matrices �x,y’s are well approximated by
the RD form found by our toolbox. Numerically, the average
error between entries is 10−8. The fact that the experimental
set ��on ;�of f� does not reproduce some of zeros in the ana-
lytical set show up as negative higher moments �larger than
3� for the �on,j1�t� j=1,2. �It also shows up in the value of
the average error between entries �10−8�, meaning local mini-
mum.� This result means that the RD form can indeed be
uniquely constructed from the data, and this is a matter of
finding the correct “configuration” in the parameter space.
Thus the result can be improved by searching the parameter
space for longer times �the results presented here were ob-
tained after a 6-h run on a PC with �2.66-GHz processor
and 1-GB RAM�, and also more efficiently. For example,
one can apply a Monte Carlo procedure with the set
�
on ;
of f� as an initial configuration, and look for better re-
sults with respect to the sum of the differences, �x,i’s and the
�x,y,ji’s. The output set �
on ;
of f�MC is then used as an initial
condition in the optimization procedure. Preliminary results
showed that the set �
on ;
of f�MC is favorable over the set
�
on ;
of f� with respect to the sum of the differences, �x,i’s
and �x,y,ji’s, in the cases tested.

Finally, we stress that the main aim of our algorithm, and
the associated toolbox methods, is to obtain a reliable unique
mechanism only from the information contained in the data
�namely, without relying on any preliminary information�. As
simple tests for any optimization subroutine presented here,
the optimization is initialized near the analytical result. In all
these tests, the analytical solution was obtained immediately.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we gave a toolbox for analyzing two-state
trajectories generated by KSs. Our toolbox builds a canonical
form of reduced dimensions �RD� based only on the infor-

TABLE IV. The analytical and toolbox-obtained ��on ,�of f�.

�on,j:1
theory �on,j:1

fit

0 −8.4e−2 8.4e−2 0

0 −4.1e−2 4.1e−2 0

6.1e−2 −8.8e−2 8.1e−2 0

−6.4e−2 −3.7e−2 4.5e−2 0

�on,j:1
theory �on,j:2

fit

6.3e−1 0 0 0

0 0 0 8.2e−3

5.6e−1 1.5e−2 −5.1e−3 1.9e−4

1.2e−1 −6.0e−3 −3.6e−3 8.6e−3

�of f,j:1
theory �of f,j:2

fit

3.0e−1 0 6.5e−4

1.34 0 3.0e−3

4.42e−1 −1.05e−2 5.96e−4

1.29 3.96e−3 2.75e−3

�of f,j:1
theory �of f,j:2

fit

0 1.6e−1 0

0 3.6e−2 0

−3.94e−2 1.71e−1 1.79e−4

3.15e−3 2.94e−2 1.96e−4 �
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FIG. 8. �Color online� The generalized binned successive WT-

PDFs ���x +�y�2�t� as a function of time, for all four combinations of
x, y=on, off, on a linear-log scale, obtained from the RD form that
was constructed from the data �circles�, and the analytical curves
�dashed lines�. The coincidence is satisfactory in all four panels.
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mation it extracts from the data. In the current context, a
canonical form is a mechanism that is uniquely obtained
from the data, and any on-off KS is equivalent to only one
canonical form. Important features of RD forms include: RD
forms are on-off networks with connections only between
substates of different states. The connections have �usually�
nonexponential WT-PDFs. A RD form has the simplest to-
pology that can reproduce the data, but the WT-PDFs for the
connections are usually multiexponentials, and this reflects
the complex topology of the underlying KS.

The toolbox executes a four-step algorithm:
�i� Estimation of the spectrum and amplitudes of the WT-

PDFs of the single periods in the trajectory, �x�t�’s: �x�t�
=�i=1

Lx cx,ie
−�x,it.

�ii� Estimation of the matrices �x,y’s that appear in the
exponential expansions of the �x,y�t1 , t2�s:

�x,y�t1,t2� = �
i=1

Lx

�
j=1

Ly

�x,y,ije
−�x,it1−�y,jt2.

�iii� Determination of the numbers of substates in the two
states in the RD form from the estimated ranks, Rx,y, of the
�x,y�t1 , t2�’s. Mathematically, Rx,y is the rank of �x,y.

�iv� Determination of the RD form starting from a low-
resolution RD form constructed from the information col-
lected in the first stages of the analysis. This step uses opti-
mization subroutines for determining the pre-exponential
coefficients, �x,jki, of the WT-PDFs for the connections in the
RD form, �x,ji�t�=�k=1

Lx �x,jkie
−�x,kt.

Our toolbox is based on several unique approaches for
analyzing the on-off trajectory: first, it builds a canonical
form directly from the data. Then, it builds the matrices �x,y,
estimates the ranks of �x,y�t1 , t2�, and phrases the first
mechanism-dependent optimization step as a root-search
problem. To the best of our knowledge, none of these tech-
niques were used before in the analysis of two-state trajec-
tories, but, here, were proven crucial for the success of the
analysis, i.e., constructing a reliable canonical form of re-
duced dimensions. The toolbox compiles, self-consistently,
the information obtained from the various steps of the analy-
sis for building the RD form. Our toolbox gives more accu-
rate results than existing methods in the cases examined by
us. The methods that constitute the backbone of our toolbox
include the following:

�i� WT-PDFs with single arguments �i.e., �x�t�, �x+y�t�,
���x + �y�2�t�, x, y=on,off� are found from the data by a sub-
routine that is based on the Padé approximation technique
and a mechanism-free maximum likelihood procedure.

�ii� The matrices �x,y’s, x, y=on,off, are estimated by a
method that builds a matrix from the single argument WT-
PDFs’ amplitudes and rates �i.e., the expansion coefficients
of �x�t�, �x+y�t�, ���x + �y�2�t�, x, y=on,off�, and uses this ma-
trix in a numerical algorithm for estimating the matrices
�x,y’s. A mechanism-free maximum likelihood procedure is
applied as a final step.

�iii� The ranks Rx,y’s of the �x,y�t1 , t2�’s are estimated by a
method that analyzes the ratio of successive singular values
in the decomposition of the cumulative WT-PDF of the sec-
ond order. Crucial for the success of this technique is use of

the second order cumulative WT-PDF to reduce noise, and
the tuning of the bin-size of the 2D histogram by analyzing
the randomized data.

�iv� The coefficients in the exponential expansions of the
�x,ij�t�’s are found by two-step optimization subroutines. The
first optimization subroutine uses the coefficients extracted in
the first steps of the analysis, but not the random times and is
built as a root-search problem. The equations use the coeffi-
cients collected in the first stages of the analysis, and the
physical requirements, �x,ij�t��0, for every x, i and j,
phrased as demands on the couple first moments of the
�x,ij�t�’s. The initial conditions in this optimization subrou-
tine are found by an iterative algorithm with random updat-
ing. The output of this optimization can be used as an initial
condition in a maximum likelihood subroutine with the ran-
dom times. Expressions for the analytical derivatives of the
target functions were derived �Appendix C�, and can be used
in the optimization subroutines.

All the methods in our toolbox are automated in MATLAB

codes for a convenient use in the analysis of experimental
data. Note that the first stages in our routine are flexible
enough to be easily implemented in any type of routine,
where the specificity of building the RD form from the data
enters only in mature stages of the routine. We state that the
toolbox is freely available for academic research upon elec-
tronic request.

Lastly, we briefly refer to the analysis of the particular
example of protein’s dynamics, e.g. �17�. In these experi-
ments, it is possible to translate the data into a two-state time
series, which means defining a folded state and an unfolded
state. Each of these states can contain many semistable struc-
tures. The ensemble of structures constitutes the substates in
the underlying KS. Our analysis of such a system gives the
number of semistable structures in the folded and unfolded
states, the number of structurally different pathways that
connect folded and unfolded structures �these are the num-
bers of substates in the RD form�, and the dynamics of each
pathway �these are the WT-PDFs for the connections in the
RD form�. It is important to note that this is the maximal
amount of information that can be known on the dynamics of
the protein from the folded-unfolded trajectory.

ACKNOWLEDGMENT

The authors acknowledge support from the NSF under
Grant No. CHE 0556268.

APPENDIX A: OBTAINING WT-PDFS FROM THE DATA:
EXPONENTIAL FIT SUBROUTINE

This appendix presents our exponential fit subroutine. We
assume that the experimental curve, �exp�t�, obeys an expo-
nential expansion,

�exp�t� = �
i=1

L

cie
−�it, �A1�

and aim at finding the coefficients, ci’s, the eigenvalues, �i’s,
and the optimal number of terms in the expansion, L. Note
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that �exp�t� is defined for times fulfilling dt� t�T. Here, dt
is the trajectory bin size and T is the largest observed random
time. The subroutine first smooths the experimental curve
according to �67,68�,

�̃exp�t� =
1

Td



0

Td �exp�t + q�
�exp�q�

dq .

Here, Td determines the smoothing degree. When Td is small,
the degree of smoothing is small. In the routine, we vary Td
around Td
0.05T. �Note that for a peaked input curve,
�exp�q� in the integrand’s denominator should be replaced by
�exp�tmax+q�, where tmax is the time for which �exp�q� is
peaked.� It is straightforward to see that for the above
smoothing procedure, �̃exp�t� follows an exponential expan-
sion with the same eigenvalues as �exp�t�,

�̃exp�t� = �
i=1

L

c̃ie
−�it,

but with different coefficients c̃i’s that are proportional to the
original coefficients and obey,

c̃i =
ci

Td



0

Td e−�iq

�exp�q�
dq .

The smoothing is performed to improve the accuracy of the
numerical procedure, and after the smoothing step, we end
up with the same problem of determining the coefficients,
eigenvalues, and optimal order in an exponential expansion
of an experimental curve. To continue, the Padé approxima-
tion technique is used �62,66�. First, we calculate, numeri-
cally, the averages of tne−s0t using the experimental curve
�hereafter, we use the initial WT-PDF in Eq. �A1��,

mon�s0� = 

dt

T

�exp�t�tne−s0tdt; n = 1, . . . ,2P . �A2�

The set �mo�s0�� in Eq. �A2� contains the first 2P coefficients
in a Taylor expansion of �̄exp�s� around s0. In Eq. �A2�, P
can be taken as large as needed, given that the numerical
integral in Eq. �A2� converges for any n. The convergence of
the integral for large values of n can be achieved when s0 is
large. However, when s0 becomes too large, mon�s0� for
small values of n is not accurately computed. Thus s0 should
be chosen such that it gives the best fit, and this happens
when the “important” coefficients are of the same order of
magnitude �62,63�. It was suggested that the iterative for-
mula �65�,

s0,new = s0,old + 1 + moi�s0,old�/moi+1�s0,old� ,

where i+1 is the largest coefficient’s order in the calculation,
leads to this property. �In fact, under the mild assumptions
that are automatically fulfilled by the acceptance of Eq. �A1�,
the iterative formula for s0,new leads to a ratio of unity for the
largest �computed� successive moments.�

We use the moments �mo�s0�� in the Longman recursion
relations �64�, to get the Laplace transform expansion of
�exp�t�. The Longman recursion relation gives the coeffi-
cients in a polynomial over polynomial expansion of a func-

tion, given its first p Taylor coefficients, and this is exactly
the problem at hand. In particular, the Longman recursion
relations transform the information contained in the �mo�s0��
into a different set of coefficients �A ,B�, such that

�̄exp�s� =
A0 + A1�s − s0� + A2�s − s0�2 + ¯ + Ap−1�s − s0�p−1

B0 + B1�s − s0� + B2�s − s0�2 + ¯ + Bp�s − s0�p ,

�A3�

where B0 is set to 1. �For details about the algorithm by
Longman, see Ref. �64�.� Equation �A3� is the exact Laplace
transform of the function in Eq. �A1�, but it also has the
structure of a polynomial over a polynomial thus Eq. �A3� is
the Padé representation of �̄exp�s� for p=L, around s0. �If the
original function in the time domain cannot be expressed
analytically as a sum of exponentials, or if p�L in Eq. �A3�,
then Eq. �A3� approximates the Laplace transform of the
original function, but otherwise Eq. �A3� is exactly the
Laplace transform of the original curve.� Thus the Longman
recursion relation gives the coefficients �A ,B� in Eq. �A3�,
from which the ci’s and �i’s are computed by writing the
polynomials in Eq. �A3� in root forms ��=s−s0�,

�̄exp�s� =
�i=1

p−1�� − Ãi�

�i=1
p �� − B̃i�

, �A4�

so

�i = s0 + B̃i �A5�

and

ci = �� j=1
p−1�� − Ãj�

� j�i
p �� − B̃j�

�
�=B̃i

. �A6�

One of the advantages of using the Longman recursion rela-
tion is that for a given smoothing degree �Td�, and a given
value of s0, we get very cheaply, computationally, a set of
approximations to an increasing order in p in Eq. �A3�. For
analytical curves, one can choose the best approximation
among the obtained approximations by a stability analysis of
the poles of residues of each approximation �62,63�. We have
found that the cheapest and most reliable way to choose the
best approximation for a given experimental curve �and a
given smoothing degree and a given value of s0� is by using
a nonlinear mean least square criteria, which demands that
the quantity,

�x2 = �
t

�f fit�t��� − �exp�t��2,

is minimal. Here, the function f fit�t ��p� is the fit function
with the parameters �p= �A ,B�p for order p �namely, the
parameters of the fit are calculated with the first 2p Taylor
coefficients of the input curve�.

We define the best “local” fit as the fit that minimizes �x2

for a given smoothing degree and a given value of s0. The
comparison among the best local fits, which are obtained
while changing the smoothing degree and the value of s0, is
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done by demanding a maximum for the likelihood score of
the fit. Namely, for each local best fit, we calculate the like-
lihood of the fit given the random times,

Lloc =
1

Ntra
�
i=1

Ntra

ln�f fit�ti��loc�� ,

where Ntra is the number of on-off cycles in the trajectory.
�For large data set, we take only a fraction of the total data in
the likelihood calculations.� The best global fit is the one
with the highest likelihood score, but we must compensate
on the increase in the likelihood for fits with more compo-
nents. This is done by using the Bayesian information criteria
�BIC�. BIC is formulated as BIC=−2Lloc+N�

ln�Ntra�
Ntra

, where
N� is the number of free parameters. The BIC score is mini-
mal for the best fit.

The likelihood approach enables us also to change the
criteria for finding local best fits. For this we use �x2

=�t�f fit�t ���pow−�exp�t�pow�2, and in the routine we usually
take pow=1,0.1,0.01 �a relative low pow value gives a
higher weight for small f fit�t ��� values�.

The last step in our exponential fit subroutine directly
maximizes the likelihood of the fit with the initial conditions
being the best “global” fit, and with constraints ensuring that
the obtained fit is positive definite. For the direct maximiza-
tion of the likelihood function we use the command “fmin-
con” in MATLAB �so, in fact, we minimize minus log likeli-
hood�. We note that the final step of direct maximization of
the likelihood function does not change the number of com-
ponents �the most prominent effect in this regard can be that
some amplitudes become very small relative to others, or
some rates become very close to each other�, and, as usually
happens with numerical minimizations, the final solution is
sensitive to the initial condition. For our current purposes,
this behavior is favorable, because the initial condition is
already a very good solution for the problem. However, the
optimization step can improve the results �up to 20% in some
of the cases studied here�, but cannot lead to a worse solu-
tion.

APPENDIX B: CORRELATION ANALYSIS OF THE DATA

This appendix is complementary to Secs. III B 1 and
III B 2 in the main text, and gives our subroutines for finding
and quantifying correlations in the data. The first subsection
in this appendix discusses the technical details for evaluating
the results from the tests that check the existence of correla-
tions in the data. The second subsection presents all the de-
tails of the subroutine that finds the binned and generalized-
binned successive WT-PDFs and the matrices �x,y’s. The
third subsection gives the details of the method that estimates
the rank of an experimental 2D WT-PDF. The outputs of
these three subroutines are estimations for the degree of cor-
relations between events in the data and the matrices �x,y’s.

1. Determining correlations between events

To use the methods of Sec. III B 1 for detecting correla-
tions in the data, we employ a standard statistical confidence

test. We exemplify this test by evaluating the results from the
moment analysis �method a.3 of Sec. III B 1�. Say that we
compute the average,

�tx,1ty,2	 =
1

Ntra
�
i=1

Ntra

tx,ity,�x,y+i,

from the data. To know whether the data are correlated or
not, we compare the average of the same quantity obtained
from the randomized data. In particular, we define the ratio,

rMx,y,n
= �tx,1x,1

n ty,2
n 	/��tx	�ty	�n.

The first order difference uses rMx,y,1
,

D = �rMx,y,1
− 1� � 0.

The significance test determines the upper bound for which
D is still regarded as zero, meaning that the data are uncor-
related. To find this upper bound, we associate errors with
the moment values. The error in �tx,1ty,2	 is obtained by di-
viding the trajectory into segments of Neve events �so there
are Nseg=Ntra /Neve segments�, and calculating the quantity,

� = ���tx,1ty,2	2	O.S. − ��tx,1ty,2		O.S.
2

= �tx,1ty,2	���tx,1ty,2	2	O.S./�tx,1ty,2	2 − 1.

Here, �·	O.S. averages the argument · over the segments, and
the equality, ��tx,1ty,2		= �tx,1ty,2	 was applied to get the final
expression. ��tx,1ty,2	2	O.S. is given by

��tx,1ty,2	2	O.S. =
1

Nseg
�
i=1

Nseg

�tx,1ty,2	i
2,

and, in particular,

��tx,1ty,2	2	O.S. =
1

Nseg
�
i=1

Nseg � 1

Neve
�
j=1

Neve

tx,j
i ty,j+�x,y

i �2

=
1

Nseg
� 1

Neve
�2

�
i=1

Nseg

�
j=1

Neve

tx,j
i ty,j+�x,y

i �
k=1

Neve

tx,k
i ty,k+�x,y

i

= � 1

Neve
�2

�
j,k=1

Neve

�tx,jty,j+�x,y
tx,kty,k+�x,y

	

=
1

Neve
��tx,1

2 ty,2
2 	 + �tx,1ty,2tx,2ty,3	 + ¯ � .

The sum in the last line has Neve terms. Excluding the first
term, all terms approximately equal to �tx,1ty,2	2, and thus for
large Neve we get

��tx,1
2 ty,2

2 	2	O.S. 

1

Neve
�tx,1

2 ty,2
2 	 + �tx,1ty,2	2.

In terms of �,

� � �tx,1ty,2	� 
 �tx,1ty,2	��tx,1
2 ty,2

2 	/�tx,1ty,2	2� 1

Neve
.

A similar analysis is performed on the randomized data, and
leads to
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�N.C. = ���tx	2�ty	2	O.S./�tx	2�ty	2 − 1


� 1

Neve

��tx
2	�ty

2	/�tx	�ty	 .

Note that in practice, the averages are calculated with the
entire data, and Neve=Ntra. Finally, we look on the quantity,

PCR = D − ��; � = rMx,y,1
� + �N.C..

When �=1 and PCR�0, there are correlations in the data
with 85% of confidence. Increasing the value of � while
keeping PCR�0, increases the confidence level of the result.
For example, for �=1.39 and PCR�0, there are correlations
in the data with 95% confidence, and for �=3 with PCR�0
there are correlations in the data with 99.998% confidence.
The confidence values assume Gaussian noise �around the
means�. For the current problem, this is an adequate assump-
tion for large Neve.

The same analysis done above for �tx,1ty,2	 is performed
also to higher order moments of the two-dimensional WT-
PDF of successive events. For example, for,

�tx,1
2 ty,2

2 	 =
1

Ntra
�
i=1

Ntra

tx,i
2 ty,i+�x,y

2 ,

the error factor is given by

� = ���tx,1
2 ty,2

2 	2	O.S./�tx,1
2 ty,2

2 	2 − 1


� 1

Neve

��tx,1
4 ty,2

4 	/�tx,1
2 ty,2

2 	2.

2. The matrices �x,y’s

This subsection estimates the matrices �x,y’s. For ex-
ample, the matrix �on,of f, with dimensions Lon, Lof f gives
�on,of f�t1 , t2�,

�on,of f�t1,t2� = �
i,j=1

Lon.Lof f

�on,of f,ije
−t2�y,j−t1�x,i,

and consequently determines the binned successive WT-PDF,

�on+of f�t� = �
i,j

�on,of f,ij�e−�on,it − e−�of f,jt�/��of f,j − �on,i� ,

and the generalized-binned successive WT-PDFs,

���on + �of f�2�t�

t/3

 �

i=1

Lon

�
j=1

Lof f

�on,of f,ije
−0.3t��on,i+�of f,j�.

�The generalized-binned successive WT-PDFs given above is
in the short time approximation, t��on,i+�of f,j��1 for every i
and j.�

In our routine, we build �x+y�t� from the trajectory, and
use the exponential fit command to find its exponential ex-
pansion. The amplitudes of �x+y�t� are found by matching
the rates obtained from the fit �denoted by �x+y� and those
found for the �x�t�’s �namely, the set ��x ,�y��. Then, a
mechanism-free maximum likelihood procedure is per-
formed. Here, the rates ��x ,�y� are input constants, the am-
plitudes �x+y,i’s are the variables, initialized by the values
found by the fit and the rate-matching procedure.

Note that, usually, not all the Lx+Ly components are re-
covered from the fit of �x+y�t�. To estimate the missing am-
plitudes, the rate-matching procedure is applied for all the
entries in the spectrum ��x ,�y� using the fit rates �x+y,i’s.
This artificially creates a situation in which different rates
have the same amplitudes in the expression for �x+y�t�, and it
is corrected by dividing the amplitudes of the same �x+y,i
according to the order of appearance.

To get the matrices �x,y’s, we start with fitting
���x + �y�2�t� / t /3 to a sum of exponentials, with as many as
LxLy terms, using the exponential fit subroutine. Then,
matching a fit rate to 0.3��x,i+�y,j� gives initial value for
entries in the matrix �x,y. These are the initial values for the
variables in a mechanism-free maximum likelihood proce-
dure, where the target function is built from �x,y�t1 , t2�.

Similar to the note given above for the construction of the
�x+y,i’s, the number of terms found from the fit of
���x + �y�2�t� / t /3 is usually smaller than the number of the
elements in �x,y ��LxLy�. To estimate the missing entries, a
matrix equation relates the �x,y,ji’s to all the coefficients that
were already found in the routine. �The discussion below is
made for particular x and y values, x=on and y=off, but the
same operations are done for any other combination of x and

y.� In particular, we define a vector V� �on.of f
such that

�V� �on.of f
�i+Lon�j−1� = �on,of f,ij

and a matrix Ac, with dimensions �2�Lon+Lof f� ,LonLof f�, and
entries

�Ac�ij =�
1/�n,k 1 � i � Lof f ;k = j + �i − 1�Lon

1/�� f ,k − �n,i−Lof f
� 1 + Lof f � i � 2Lof f ;k = j + �i − 1 − Lof f�Lon

1/�n,k 1 + 2Lof f � i � 2Lof f + Lon;k = �j − 1�Lon + i − 2Lof f

1/��n,k − � f ,i−2Lof f+Lon
� 1 + 2Lof f + Lon � i � 2�Lof f + Lon�;k = �j − 1�Lon + i − 2Lof f

0 otherwise
� .

The product matrix-vector gives the fit amplitudes

O. FLOMENBOM AND R. J. SILBEY PHYSICAL REVIEW E 78, 066105 �2008�

066105-14



AcV� �on.of f
= V� c.

Here, V� c is given by

�V� c�i = �
cof f,i 1 � i � Lof f

�on+of f,i−Lof f
1 + Lof f � i � 2Lof f

cof f,i−2Lof f
1 + 2Lof f � i � 2Lof f + Lon

�on+of f,i−2Lof f−Lon
1 + 2Lof f + Lon � i � 2�Lof f + Lon�

� .

If only some of the elements of V� �on.of f
can be estimated from

the fit of ���on+ �of f�2�t� / t /3, only the rest can be estimated by
the above matrix operation. The maximal number of un-
knowns that can be obtained from this approach is exactly
the rank of matrix Ac, where the rank cannot exceed the
minimum between 2�Lon+Lof f� and LonLof f. We note that the
number of rows in the matrix Ac can be extended by building
from the data the WT-PDF ��x−y��t�, which may, in some
cases, lead to an increase in the rank of matrix Ac, and to
better results. In any case, when Lx�2, the number of rows
is always smaller than the number of unknowns without ex-
tending the number of rows in matrix Ac.

Usually the matrix Ac is not a square matrix, so we use its
singular value decomposition to obtain the unknowns: let

Ac = USV�,

be the singular value decomposition of matrix Ac, then

V� �on.of f
= VS−1U�V� c.

Here, we use the property, VV�=1;UU�=1, and take S
a square matrix. To use the information obtained from the

fit of ���on+ �of f�2�t� / t /3, we write V� �on.of f
=V� K

�on.of f
+V� U

�on.of f
�the superscript K stands for known elements found from the
fit of ���on+ �of f�2�t� / t /3 and the matching procedure, and the
superscript U stands for unknown elements�, and modified

vector V� c to, V� c
M =V� c−AcV� K

�on,of f
, such that

V� U
�on.of f

= VS−1U�V� c
M .

Theoretically, when the rank of matrix Ac equals the num-
ber of unknown, it is sufficient to apply the matrix operation,

without a modification of the vector V� c, to get the unknowns.
However, as long as the rank of matrix Ac equal the number

of elements in the vector V� U
�on.of f

, it is possible to get all the

unknowns from the above method �where vector V� c is modi-
fied�. As the elements in the matrix Ac contain statistical
errors, a mechanism-free maximum likelihood procedure is

done to get the final estimation for V� �on.of f
, with initial con-

dition being the elements of the vector V� �on.of f
found from the

matrix operation. We can produce many different sets of ini-

tial conditions, by choosing different elements in the sets

V� K
�on.of f

and V� U
�on.of f

. The best fit maximizes the likelihood
function.

3. Rank estimation

This subsection gives the subroutine for estimating the
rank of a 2D histogram. Technically, we work with a 50
�50 matrix, with an initial bin size dt. The final bin size is
determined by performing the subroutine described below on
the randomized data, and demanding that the resulting rank
is 1. This reference-point method for determining the actual
bin size in the calculation of the rank of �x,y�t1 , t2� is found
important for achieving accurate results.

The calculation starts with the construction of the second
order cumulative histogram, and obtains its spectrum of sin-
gular values. The ratio of successive singular values is ex-
amined; the rank equals the order of the ratio that does not
exceed a predetermined threshold value for the first time,
minus 1.

The accuracy of the result can be improved by looking on
the value of largest noise singular value, if we can estimate
the noise in the histogram. It was shown in �71�, that for a
sum of a rank r matrix of dimensions �m ,n� with a full rank
�Gaussian� noise matrix of variance �, the singular value of
order r+1 lies within the boundaries

��c � �r+1 � ��mn ,

where c is determined by the user-defined significance-level
obtained from a �2 distribution with m degrees of freedom.
These boundaries assume that the rth singular value of the
unperturbed matrix is, at least, twice as large as the largest
singular value of the noise matrix. Namely, the noise must be
small for the ratio method to work. We have found that the
second order cumulative 2D histogram works best for our
purposes in reducing the noise. We note that an estimation of
the bounds of the noise level in the 2D cumulative histogram
of order n can be obtained by the equation

��tx,1
2 ty,2

2 	Cn
/NCn

� � � ��tx,1
2 ty,2

2 	Cn
/Nbin,

where �tx,1
2 ty,2

2 	Cn
is calculated with all events ��NCn

� in the
2D cumulative histogram of order n, and Nbin is the number
of events in the first bin of the cumulative histogram.

Finally, we estimate the threshold value for the ratio test
by taking the ratio of the upper to lower bounds of �r+1,
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threshold = �mn/�c .

For a 50�50 matrix the threshold value is 5.73 for signifi-
cance level of 0.99.

APPENDIX C: FINDING THE WT-PDFS
FOR THE CONNECTIONS IN THE RD FORM

This appendix gives the mathematical details of the sub-
routine that builds the WT-PDFs for the connections in the
RD form, and it is complementary to Sec. III C in the main
text.

We start by expressing �x�t� using the WT-PDFs for the
connections in the RD form,

�x�t� = �
j=1

Ly

�
i=1

Lx

Wx,i�x,ji�t� . �C1�

�x,ji�t� in Eq. �C1� is the WT-PDF for connecting substate i
in state x to substate j in state y in the RD form, and is given
by

�x,ji�t� = �
k=1

Lx

�x,jkie
−�x,kt. �C2�

Equation �C2� introduces a set of parameters ��on ;�of f�. The
aim is to determine these parameters from the data for a
complete specification of the RD form. �Recall that at this
stage, the numbers of substates in both states in the RD form
are known from the analysis of the previous stages, as well
as the eigenvalues, and the order of the expansion in Eq.
�C1�.� To estimate the set ��on ;�of f�, the Wx,i’s in Eq. �C1�
should be related to the ��on ;�of f�. The Wx,i’s are the normal-
ized steady state fluxes from state y to substate i in state x,
and are completely defined by the zeroth and first order mo-
ments of the �x,ji�t�’s. �Note that the zeroth order moment of
�x,ji�t� is not unity if substate ix has more than one ongoing
connection. Particularly, �x,ji=�0

	�x,ji�t�dt is the probability
for the transition, ix→ jy.� The technical details for relating
the normalized steady state fluxes to the ��on ;�of f� are given
in the next subsection.

The calculation of ��on ;�of f� is carried out in two steps.
First, a corresponding set of coefficients, denoted by
�
on ;
of f�, is calculated. The set �
on ;
of f� is found in an
iterative algorithm that has a random updating role. We run
4��Lon+Lof f�LRD,onLRD,of f�2 iterations, and save the best result
�the best result minimizes the distance between the RD forms
�x,y’s and its actual experimental values�. The best set is the
�
on ;
of f�. The second step in the construction of the
��on ;�of f� uses the �
on ;
of f� as an initial condition in an
optimization subroutine with constraints and analytical de-
rivatives. Now, the set �
on ;
of f� is not unique �in fact, there
are infinitely many sets �
on ;
of f�, due to the nonlinearity of
the iterative equations�, and the parameter space is noncon-
tinuous �this is a consequence of the physical demands that
the WT-PDFs must fulfill�. Therefore the optimization in the
second stage of this subroutine usually �actually, almost al-
ways� finds local minimum. The solution to this difficulty is
to produce many initial sets. The result ��on ;�of f� has the

best final score in the likelihood calculations. We note that
the averaging over initial sets �
on ;
of f� is the most time
consuming step in our analysis, and can take half a day for a
30 parameter system on a standard PC with �2.66-GHz pro-
cessor and 1-GB RAM.

Technical details for performing the above subroutine are
discussed in the subsequent subsections.

1. The weights Wx,i’s

To get the weights Wx,i’s in Eq. �C1�, we start with the
definition

Wx,i = �
j

Jy→x,ij��
ij

Jy→x,ij , �C3�

where the flux Jy→x,ij obeys

Jy→x,ij = �y,ijPy,j�ss� . �C4�

In Eq. �C4�, �y,ij =
�y,ij

�ty,j	
, where �ty,j	=�i�0

	t�y,ij�t�dt. We also
force the normalization, 1=�i�0

	�y,ij�t�dt. �When mapping a
KS into a RD form this normalization immediately follows,
but needed to be enforced in the analysis of data from ex-
periments.� Note that �y,ij is the ij element of matrix �y.
Now, to get the Wx,i’s we need the Py,j�ss�’s in Eq. �C4�,
which is the probability to occupy substate j in state y in the
RD form at steady state. This probability is found from the
steady state equation,

�P� �ss� = 0. �C5�

In Eq. �C5�,

P� = � P� on�ss�

P� of f�ss�
� ,

and Pz,j�ss�= �P� z�ss�� j. Matrix � is defined by,

� = �− diag�1�of f�on� �of f

�on − diag�1�on�of f�
� , �C6�

where the operation diag in Eq. �C6� takes a vector and pro-
duces from it a square diagonal matrix whose ith diagonal

element is the ith element of the original vector. P� �ss� is the
normalized eigenvector of matrix � that corresponds to the
zero eigenvalue, and is easily found numerically.

2. The iterative scheme for producing the coefficients {�on;�off}

We start by introducing the analytical relationships be-
tween the coefficients of the �x�t�’s and the ��on ;�of f�,

cx,H = �
j=1

LRD,y

�
i=1

LRD,x

Wx,i�x,jHi; H = 1, . . . ,Lx. �C7�

Equations �C7�, Lx in number, are obtained by comparing
Eqs. �2� and �C1� after substituting Eq. �C2� into it. Simi-
larly, the amplitudes �x,y,ji can be analytically related to the
��on ;�of f�. For x�y we have
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�x,y,GH = �
j=1

LRD,y

�
i=1

LRD,x

�
k=1

LRD,y

Wx,i�x,jGi�y,kHj;

G = 1, . . . ,Lx, H = 1, . . . ,Ly , �C8�

and for x=y,

�x,x,GH = �
i=1

LRD,x

�
j=1

LRD,y

�
j�=1

LRD,x

�
k=1

LRD,y

Wx,i�x,jGi�̄y,j�j�0��x,kHj�;

G = 1, . . . ,Lx, H = 1, . . . ,Lx. �C9�

We use Eqs. �C7�–�C9� to update the �
on ;
of f�,


x,j�H�i� = 
x,j�H�i� + �x,H, �C10�

with �x,H=cx,H−� j=1
LRD,y�i=1

LRD,xWx,i
x,jHi being the difference
between the actual value of cx,H and its approximation using
the temporarily RD form, and


x,j�H�i� = 
x,j�H�i� + �x,y,HG

sgn�VDy,Gj��

VPy,Gj�
, �C11�

where, �x,y,GH=�x,y,GH−� j=1
LRD,y�i=1

LRD,x�k=1
LRD,xWx,i
x,jGi
y,kHj �x

�y� is the difference between the actual value of �x,y,GH and
its approximation using the temporarily RD form. The sign
of quantity VDy,Gj =�k=1

LRD,x
y,kGj ensures the stability of the
updating-scheme, as well as the quantity VPy,Gj

=�k=1
LRD,x�
y,kGj� �namely, these factors are introduced for de-

creasing the error in the RD forms value of �x,y,GH after the
update�.

The actual indices that determine the 
x,j�H�i� to be up-
dated are chosen randomly, but on and off coefficients are
updated sequentially. After each iteration, the weights are
updated. To initialize the iterative algorithm, a symmetric
configuration is chosen: Wx,i=1 /Nx and 
x,jHi=cx,H /Ny. The
number of iterations is proportional to the square of the num-
ber of parameters. �There is no convergence rule that stops
the updating, but the best set along the iterations is saved.�

There are also several conditions that the �
on ;
of f� must
fulfill. These are derived by demanding that the
��on�t� ;�of f�t�� are positive for every value of t in the time
range of the experiment, namely,

�x,ij�t� � 0; dt � t � T , �C12�

for every i, j, and x. �Every �x,ij�t� decays to zero for suffi-
ciently long time, by construction.� When �x,ij�t� becomes
negative for a particular value of t that is relevant to the
experiment, the most relevant negative coefficient �deter-
mined by its conjugated rate� is halved. If all the amplitudes
are negative, they are all made positive. This sign inversion
was found to have an important role in the success of the
subroutine, because it also connects, otherwise unconnected,
regions in the parameter space. When Eq. �C12� is satisfied
for every i, j, and x, the normalization condition,
� j�0

	�x,ji�t�dt=1, with 0��0
	�x,ji�t�dt�1 �for ensuring that

�0
	�x,ji�t�dt has the meaning of probability�, can be easily

obtained by an appropriate division. Note that the non-
negativity condition with the appropriate normalization en-
sure that the probabilities of Eq. �C5� are all non-negative

and do not exceed unity, namely, 0� � P� �ss��1⇀. In fact, to

fulfill 0� � P� �ss��1⇀, we need to demand only that the zeroth
and first moments of �x,ij�t� are positive, for every i, j, x.

3. The optimization subroutine
for obtaining the {�on;�off}

Each set �
on ;
of f� is used as an initial condition in an
optimization subroutine. The optimization subroutine finds a
common root for a set of equations. The optimization uses
the command fsolve in MATLAB. The equations are the �x,H’s
and �x,y,HG’s defined in the previous subsection, but there are
also equations that guarantee the normalization of the
�x,ij�t�’s. This is done by demanding that the 0th and nth
moments of each �x,ij�t� are positive, with �i�0

	�x,ij�t�dt=1
for every j, and x. Note that when the 0th and nth moments
of �x,ij�t� are positive, all the moments in between them are
positive also only for a two-component �x,ij�t� �higher mo-
ments than the nth one can always be negative�, but we have
found that this is a good-working condition also when �x,ij�t�
has more than two components. In this study, an extensive
conditioning on the moments of �x,ij�t� led to worse results
�relative to a smaller number of constraints�, because it re-
stricts the available parameter space that the optimization
subroutine can explore. The same is true for large values of
n. In particular, the maximal number of moments of �x,ij�t�
that were constrained and led to good results is 3: 1� �t0	
�0, �t1	�0, �tn	�0 with 4�n�1, for every i, j, and x. n
=3 led to the best results and n=5 completely damaged the
search, and almost always ��99% � the optimization output
was the initial point.

The above optimization subroutine does not use the actual
data, but only the information that was extracted from it,
which is stored in the coefficients cx,H’s and the �x,y,HG’s.
However, an additional step can use the data in a
mechanism-dependent maximum likelihood subroutine, with
the found ��on ;�of f� being the initial condition. The likeli-
hood function reads

l���data� =
1

4�
x,y

lx,y���data� , �C13�

where

lx,y���data� = ln�Lx,y���data��

=
1

Ntra − �x,y
�
j=1

Ntra−�x,y

ln��x,y�tx,j,ty,j+�x,y
�� .

In Eq. �C13�, � represents the set ��on ;�of f�. The minimiza-
tion procedure uses the command fmincom in MATLAB. �The
command can choose an algorithm from a variety of optimi-
zation procedures, but usually the algorithm used for the cur-
rent problem is the quasi-Newton line search algorithm.� The
constraints in the minimization subroutine demand �x,ij�t�
�0, for every i, j, and x, and relevant t. In both optimization
subroutines, the analytical derivatives of the target function
can be used, and the way to obtain them is given in the next
subsection. We note that in all optimization subroutines, we
first use numerical derivatives because this enables control-
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ling the maximal change in the variable values. We have
found that, in some cases, better results are obtained when
allowing relatively large values for the maximal change in
the variables. Note that the second optimization may im-
prove the results when the �x,y,ij’s are relatively noisy �as can
be deduced by an error analysis using the ���x + �y�2�t�’s�.

4. The analytical derivatives
for the optimization subroutine

In our approach, the variables in the optimization subrou-
tine are the �
on ;
of f�. To get the analytical derivatives of the
target function we first note that the �x,ji�t�’s are linear in the
�
on ;
of f�, and therefore the derivatives of the �x,ji�t�’s are
easily performed. Taking the analytical derivatives of the
Wx,i’s with respect to the �
on ;
of f� is harder. From Eqs. �C3�
and �C4�, we see that the difficulty in taking the derivatives
of the Wx,i’s is to take the derivatives of the steady state
probabilities of matrix �, the Pz,j�ss�’s. The solution for this
problem is to formulate it in a form of an exponential of a
matrix, and to take the derivatives of an exponential of a
matrix with respect to its entries. We proceed by recalling
that the steady state probabilities of matrix � can be obtained

from the mean residence times of a related matrix �̃,

�̃ = � − � · diag�1,0,0,0 . . . 0� .

Here, an irreversible transition from substate 1on is added,
and is of magnitude �. � does not affect the final result, but
for practical reasons it is taken to have the value of the over-

all decaying rate of substate 1on in matrix �. Matrix �̃ does
not have a steady-state solution, i.e., at infinite times the
process is sure to occupy the added trap. However, the mean
residence times of this system when starting at state 1on,
which are the elements of the column vector, 
��1�, are pro-
portional to the steady-state probabilities of matrix �:

P� �ss� = 
��1�/�U� 
��1�� .

Here, U� is the summation row vector of appropriate dimen-
sions, and vector 
��1� is defined by


��1� = 

0

	

e�̃tP̃� 0dt = − �̃−1P̃� 0,

where P̃� 0 is the vector of the initial occupancies, �P̃� 0� j =�1j.
The derivative of 
��1� with respect to any element of matrix
�, denoted by �, �
��1� /��, is given by

�
��1�/�� =
�

��



0

	

e�̃tP̃� 0dt = 

0

	 � �

��
e�̃t�P̃� 0dt . �C14�

Equation �C14� expresses �
��1� /�� as a derivative of an ex-
ponential of a matrix, where all the eigenvalues of this ma-
trix are negative thus

�
��1�/�� = �̃−1� �

��
�̃��̃−1P̃� 0. �C15�

To show this, we define Q�t�= �
��e�̃t with the obvious initial

condition Q�0�=0, and write an equation of motion for Q�t�,

�

�t
Q�t� =

�

�t

�

��
e�̃t =

�

��

�

�t
e�̃t =

�

��
��̃e�̃t� = � �

��
�̃�e�̃t

+ �̃Q�t� . �C16�

The Laplace transform of Eq. �C16� is given by

sQ̄�s� = � �

��
�̃��s − �̃�−1 + �̃Q̄�s� ,

with the solution

Q̄�s� = �s − �̃�−1� �

��
�̃��s − �̃�−1. �C17�

Noting that �
��1� /��=Q̄�0�P̃� 0 and using Eq. �C17� leads to
Eq. �C15�. Using the expression for �
��1� /��, the derivatives
of steady-state probabilities are expressed as

�P� �ss�/�� =
�
��1�/��

U� 
��1�
−

U� �
��1�/��

�U� 
��1��2

��1�

= −
�̃−1��/���̃��̃−1P̃� 0

U� �̃−1P̃� 0

+
U� �̃−1��/���̃��̃−1P̃� 0

�U� �̃−1P̃� 0�2

�̃−1P̃� 0. �C18�

Equation �C18� is easily implemented numerically.
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