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Abstract

In this work we investigate shimmy oscillations in the nose landing gear of a passenger aircraft and study

how they depend on changes in the tire inflation pressure. To achieve this, we consider a mathematical

model of a landing gear that includes the influence of the tire pressure via different tire properties, such as

cornering force and contact patch length. Experimental data obtained from two radial tires is used as a basis

for modeling the influence of inflation pressure on tire properties. Bifurcation analysis of the mathematical

model was then be performed. It yields stability diagrams in the plane of velocity and vertical force for

different values of the tire inflation pressure. Specifically, we present two-parameter bifurcation diagrams for

five different inflation pressures. This allows us to conclude that, for the type of tires considered, the landing

gear is less susceptible to shimmy oscillations at higher than nominal inflation pressures.

∗Department of Engineering Mathematics.
†Department of Engineering Mathematics.
‡Department of Aerospace Engineering.
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Nomenclature

cψ = torsional damping of strut

cδ = lateral bending damping of strut

cc = generic damping coefficient of elastic tire

ct = torsional damping coefficient of elastic tire

cl = lateral damping coefficient of elastic tire

d = vertical deflection of elastic tire

d̃ = normalized vertical deflection of elastic tire

e = caster length

eeff = effective caster length

Fz = vertical load on the gear

Fzmax
= maximum vertical load on the gear

F̃z = normalized vertical load on the gear

FKλ = lateral tire force or cornering force

F̃Kλ = normalized lateral tire force or cornering force

h = contact patch length of elastic tire

Iz = moment of inertia of strut w.r.t z-axis

Iy = moment of inertia of strut w.r.t y-axis

kα = self-aligning coefficient of elastic tire

kλ = restoring coefficient of elastic tire

kψ = torsional stiffness of strut

kδ = lateral bending stiffness of strut

lg = gear height

L = tire relaxation length

MKψ = moment due to stiffness in the torsional mode

MDψ = moment due to damping in the torsional mode

MKδ = moment due to stiffness in the lateral bending mode
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MDδ = moment due to damping in the lateral bending mode

MDα = moment due to tire lateral damping

MKα = self-aligning moment due to tire force

M̃Kα = normalized self-aligning moment due to tire force

Mλδ = coupling moment between the tire deformation and lateral mode

p = tire inflation pressure

pn = nominal tire inflation pressure

p̃ = normalized tire inflation pressure

R = radius of unloaded nose wheel tire at p̃

V = forward velocity of the aircraft

w = width of the unloaded tire at the nominal tire inflation pressure

αm = self-aligning moment limit

γ = wheel tilt or camber angle

δ = lateral bending angle

ψ = torsion angle

φ = rake angle

θ = swivel angle

Introduction

Aircraft landing gears may experience torsional and lateral vibrations, known as shimmy oscillations,

during their ground operations. Such oscillations typically occur due to a variety of flexibilities in both

structural components and the tires.1–4, 10 Shimmy oscillations can reduce stability of the landing gear and

also cause wear that affects its long-term durability. In a few cases, especially during take-off and landing

stages, such oscillations may be so severe that they hinder the pilot’s ability to read the instrument panel

accurately5, 6 a.

aAirbus internal customer service reports.
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Table 1. System parameters and their values as used in the tire modeling.

Tire property Definition Symbol

Contact patch length The length of the tire measured along its h(p̃)

circumference that is in contact with the ground.

Relaxation length The distance the tire has to travel to realize the L(p̃)

restoring force induced by a certain lateral and/or

torsional deformation.

Cornering force The lateral force developed at the tire-ground FKλ(p̃)

contact due to either steering or tilting of the

wheel.

Self-aligning moment The restoring moment responsible for aligning the MKα (p̃)

wheels with the direction of the vehicle (aircraft)

motion.

Torsional damping The tire property that is responsible for reducing the ct (p̃)

amplitude of torsional oscillations.

Lateral damping The tire property that is responsible for reducing the cl (p̃)

amplitude of lateral oscillations.

It has long been established that properties of the tire are important for the ground performance of

an aircraft. Table 1 shows a list of tire properties that play a role in airliner performance. In turn, these

properties are influenced by the tire inflation pressure, which is a tire parameter that can be changed easily

during the operation of an aircraft. Changes in tire inflation pressure have different effects on different tire

characteristics, influencing the performance of the aircraft in ways that are not well understood. Moreover,

in regular aircraft operations, tire inflation pressure is a parameter that is typically checked and changed to

the appropriate nominal value if the landing gear experiences shimmy oscillations. This forms the motivation

for this work where the influence of tire inflation pressure on the stability of a landing gear is studied.

Specifically, the question of how the tire inflation pressure influences the occurrence of aircraft nose

landing gear shimmy is considered. To this end, we start from the mathematical model presented in Ref. [8],

which considers the interaction of two vibrational modes, the torsional and the lateral bending modes.

In particular, geometric (coupling) effects of a non-zero rake angle φ of the strut with the ground are

incorporated. The kinematics of the tire is modeled with a variant of the stretched string model by von

Schillipe and Dietrich,13 which accommodates the influence of the lateral bending mode on the kinematics

of the tire.

In the past, a few works investigated the influence of inflation pressure on the ground dynamics of an

aircraft but not in the context of shimmy analysis. An example of such past research is the aircraft ground

handling study by Klyde, Magdaleno and Reinsberg,7 who analyzed experimental data from a navy jet trainer

in both time and frequency domains and concluded that tires with higher than nominal inflation pressure

showed better ground handling qualities. Another important and comprehensive study on the mechanical
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properties of pneumatic tires used in aircraft is the work by Smiley and Horne.11 The authors perform a

study of the tire properties for several different types of tire and also for a variety of vertical loads. Some

of the tire properties are also investigated as functions of tire inflation pressure. Smiley and Horne also give

empirical relationships for several different properties that are derived from the experimental data for both

static and rolling tires.

The effect of tire inflation pressure on tire properties has also been studied in the case of smaller tires (for

example, car or motorbike tires) than the ones used in typical airliners. Kasprzak, Lewis and Milliken15, 16

studied the effects of inflation pressure on tire properties to improve the accuracy and adaptability of the

Radt/Milliken nondimensional tire model.17 Similar experimental studies have been performed by Ramji,

Goel and Saran18 on small-sized pneumatic tires. Specifically, they investigated the influence of tire parame-

ters such as tire size, ply rating, vertical load and tire inflation pressure on vertical, lateral, longitudinal and

torsional stiffnesses. It is important to note that the experiments performed in both these studies involved

vertical loads that are orders of magnitude smaller than those of a typical mid-size passenger airliner. Over-

all, no comprehensive theory exists to model the influence of tire inflation pressure for all tires, especially

the ones used in modern aircraft.

The key for the work presented here is to determine and model the dependence of the tire parameters

shown in Table 1 on inflation pressure. Note that this is a difficult modeling problem; for example, different

makes of tire (radial ply vs bias ply) react differently to a change in tire inflation pressure. This means

that equations that model the relationship between tire inflation pressure and tire parameters obtained for

one tire may not necessarily be representative of a different make of tire. Therefore, our starting point is

experimental data from two radial tires as used on an aircraft nose wheel. Specifically, from the experimental

data we derive (normalized) mathematical equations that model the properties of the tire as functions of

the tire inflation pressure. With these functions, the tire inflation pressure itself becomes an operational

parameter in the mathematical model, so that we are able to study its influence on the occurrence of shimmy

oscillations. In particular, we are interested in the effect of tire inflation pressure on the interaction between

the torsional and lateral vibration modes that may result in different types of shimmy oscillations.

To investigate the question of how tire pressure influences shimmy oscillations, we perform bifurcation

analysis with the software package auto.14 Specifically, we compute two-parameter bifurcation diagrams in

the velocity versus vertical force plane that depict the onset of different types of shimmy oscillations for five

different inflation pressures. Such bifurcation diagrams give a comprehensive insight into the effect of tire

inflation pressure on different types of shimmy oscillations.

This manuscript is organized as follows. Section I discusses the mathematical model of a nose landing

gear, with special emphasis on the effect of tire inflation pressure on the tire properties. Section II presents
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the nonlinear analysis of the mathematical model for varying inflation pressures. Finally, Sec. III summarizes

the results and points to future work in the field of shimmy oscillations.

I. Mathematical model

The mathematical model of the nose landing gear considered here is that presented in Thota et al.8 The

new element is the inclusion of the tire inflation pressure as an independent parameter. Specifically, in the

current work, we model the tire properties given in Table 1 as functions of the tire inflation pressure.

The model has two geometrical degrees of freedom: first, the gear may rotate about the strut axis giving

rise to the torsional mode described by the torsion angle ψ (rad), and second, the gear may bend about an

axis parallel to the fuselage centerline giving rise to the lateral mode which, to first-order approximation, is

given by the angle δ (rad). A mathematical description of the torsional and lateral bending modes and the

coupling between them is given by the equations

Iψ ψ̈ +MKψ +MDψ +MKα (p̃) + eeff FKλ (p̃) +MDαψ (p̃) − Fz sin (φ) eeff sin(θ) = 0, (1)

Iδ δ̈ +MKδ +MDδ +Mλδ (p̃) +MDαδ (p̃) − Fz eeff sin(θ) = 0, (2)

λ̇+
V

L (p̃)
λ− V sin (θ) − lg δ̇ cos(δ) − (eeff − h (p̃)) cos (θ) ψ̇ cos (φ) = 0. (3)

Equation (1) and Eq. (2) model the torsional and lateral vibrational modes of the gear, which have

moments of inertia Iψ and Iδ, respectively. Equation (3) describes the nonlinear kinematic relationship

between the torsion angle ψ, lateral bending angle δ and the lateral deformation λ of the leading edge of the

contact patch of the tire. The effective caster length eeff is given by

eeff = e cos (φ) +R tan (φ) + e sin (φ) tan (φ) , (4)

where, e is the mechanical trail (caster) and R is the undeformed radius of the tire. The swivel angle

θ = ψ cos(φ) of the wheel differs from the steering angle ψ due to the nonzero rake angle φ. The second and

third terms in Eqs. (1) – (2) describe the stiffness and damping of the torsional and lateral bending modes

and take the form MKη̃ = kη̃ η̃ and MDη̃ = cη̃ η̃, where η̃ ∈ (ψ, δ); see Table 2 for the values of the stiffnesses

kη̃ and dampings cη̃ of the modes as used in our calculations. The latter terms in the equations are the

coupling moments that are generated due to the interaction of the tire with the ground. In Eqs. (1)–(3),

terms that depend on the tire inflation pressure are indicated by explicit dependence on the normalized

pressure p̃; (see Table 3). A detailed description of such quantities is given in Sec. I.A.1–I.A.5. Furthermore,

V is the forward velocity of the aircraft, and Fz is the vertical load it exerts on the nose landing gear. Here,
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Table 2. System parameters and their values as used in the modeling.

symbol parameter value

Structure parameters

lg gear height 2.5 m

e caster length 0.16 m

φ rake angle 9.0 deg (0.1571 rad)

kψ torsional stiffness of strut 3.0 x 105 N mrad−1

kδ lateral bending stiffness of strut 3.24 x 106 N mrad−1

cψ torsional damping of strut 110.0 N m s rad−1

cδ lateral bending damping of strut 1.0 N m s rad−1

Iψ moment of inertia of strut w.r.t its own axis 100.0 kg m2

Iδ moment of inertia of strut w.r.t axis parallel to fuselage centerline 600.0 kg m2

Fixed tire parameters

R radius of nose wheel 0.362 m

kλ restoring coefficient of elastic tire 0.01 rad−1

αm self-aligning moment limit 10.0 deg (0.1745 rad)

w tire width 0.2 m

Pressure dependent tire parameters

h contact patch length 0.1–0.3 m

L relaxation length 0.25–0.32 m

Kα torsional stiffness coefficient 0.5–1.4 m/rad

ct torsional damping coefficient 0.19–0.3

cl lateral damping coefficient 0.1–0.25

Bifurcation parameters

Fz vertical force on the gear 0.0-400.0 kN

V forward velocity 0.0-250.0 m s−1

p̃ normalized tire inflation pressure 0.6-1.4

the influence of vertical load Fz includes not only the static weight of the remainder (fuselage, wings, etc.)

of the aircraft but also the moments exerted on the gear due to its acceleration and deceleration. This type

of modeling practice is also used in the literature.2, 9 Moreover, during testing of an aircraft, Fz is measured

as one of the main parameters. Therefore, in our study Fz is used as an input and natural bifurcation

parameter.

I.A. Effect of inflation pressure on tire parameters

We now develop mathematical relations between different tire properties and the tire inflation pressure p.

To this end, we introduce the normalized tire inflation pressure as p̃ = p
pn

, where pn is the rated or nominal

tire inflation pressure of the tire under consideration; i.e., p̃ = 1.0 corresponds to p = pn. Our starting

point is experimental data for two radial tires that are commonly installed on nose landing gears of larger

airlines. In this section, we present graphs corresponding to one aircraft tire, which are also representative

of the experimental data for the other tire. The graphs shown in Secs. I.A.1–I.A.5 involve the normalized
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Table 3. Normalization of tire dependent parameters.

Symbol Tire property Definition Comments

d̃ Normalized vertical deformation d/R d is the vertical deflection of the tire

p̃ Normalized pressure p/pn pn is the rated nominal tire pressure

F̃z Normalized vertical force Fz/Fzmax
Fzmax

is the maximum take-off load

F̃Kλ Normalized cornering force FKλ/Fzmax
Fzmax

is the maximum take-off load

M̃Kα Normalized self-aligning moment MKα/Fzmax
Fzmax

is the maximum take-off load
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Figure 1. Panel (a) shows data of normalized vertical deflection d̃ of the tire as a function of the normalized vertical

load F̃z . The data is presented for three normalized inflation pressures as indicated. The slopes of the deflection curves
at the origin give the vertical stiffness of the tire for the corresponding tire inflation pressure. Panel (b) shows the
graph of the slopes of the deflection curves at the origin from panel (a) as a function of the tire inflation pressure.

quantities as defined in Table 3.

I.A.1. Contact patch length

Typically, instead of the contact patch length, vertical deflection of the tire is measured with changes in

load and pressure. Figure 1(a) shows the normalized load F̃z required to produce the normalized vertical

deflection d̃ for three different values of the normalised tire inflation pressure p̃. As the tire inflation pressure

is increased the vertical load required to produce a given vertical deflection of the tire increases. This change

is quantified in Fig. 1(b), which shows the variation of the slopes of the curves in Fig. 1(a) at d̃ = 0 with the

normalized tire inflation pressure p̃. The values in panel (b) correspond to the vertical stiffnesses of the tire

as a function of tire inflation pressure. Figure 1(b) suggests that a linear relationship between the vertical

deflection and the tire inflation pressure for a given vertical load Fz is an accurate fit for the data.

To relate vertical deflection to the length of the contact patch, we use the geometry of the deformed

tire at the tire-ground contact as shown in Fig. 2. From this geometry of tire deflection, an approximate

relationship between semi contact patch length h and vertical deflection d of the tire is given by

h(p̃) =

√

R2 − (R− d(p̃))
2
. (5)
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d

2h

R

Ground

R-d

Figure 2. A schematic of tire deformation at the tire-ground contact. Here, the dashed part of the tire indicates
undeformed tire in the absence of the ground.

We now use the information from Fig. 1(b) to compute the vertical deflection d for any given vertical

load and inflation pressure and later substitute into Eq. (5) to compute contact patch length. Accordingly,

the relationship between the semi contact patch length and tire inflation pressure for the data in Fig. 1 is

given by

h(p̃) = R

√

√

√

√1 −

(

0.9 −
F̃z

0.2943 p̃− 0.0086

)2

(6)

I.A.2. Relaxation length

The relaxation length L for an under-inflated tire is typically higher than for an over-inflated tire,11 that is,

the relaxation length decreases with an increase in the tire inflation pressure. Even though this may hold

true in the case of both radial and bias ply tires, we do not have any measured data to quantify the change in

the relaxation length. Therefore, for this study we consider the relationship obtained by Smiley and Horne

in Ref. [11]. It is given by

L(p̃) = (2.8 − 0.8 p̃)
(

1.0 − 2.25 d̃
)

w, (7)

where w is the width of the unloaded tire at the nominal tire inflation pressure p̃ = 1.0.

I.A.3. Cornering force

Figure 3 shows the normalized cornering force F̃Kλ for three different normalized vertical loads F̃z on the

gear, and for three different normalized pressures p̃. It is clearly seen from Fig. 3 that the maximum cornering

force is significantly affected by the vertical load Fz on the landing gear. However, the value of the slip angle

α ≈ 12o at which the maximum value occurs remains practically unchanged. This suggests that the cornering

stiffness, which is the slope of the cornering force curve at α = 0, depends heavily on the vertical load on

the gear while the shape of the overall curve is maintained. On the other hand, tire inflation pressure seems

to have a negligible influence on either the maximum value of the cornering force or the α value at which it

occurs. (These findings are confirmed by the second tire dataset)

From the data presented in Fig. 3 we conclude that the lateral stiffness of the tire does not depend on the
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Figure 3. Normalized cornering force F̃Kλ as a function of slip angle α. Presented is experimental data for three

different normalized vertical loads F̃z = 0.017 (squares), F̃z = 0.029 (triangles), F̃z = 0.042 (circles) on the gear, and for
three different normalized pressures p̃ = 0.7 (solid), p̃ = 0.85 (dot-dashed), and p̃ = 1.0 (dashed).

tire inflation pressure. Here, it is important to note that we arrived at this conclusion solely by analyzing the

tire data that is currently available. In the light of above discussion, for the current study we consider that

the cornering force is independent of tire inflation pressure, at least for a range of pressures in the vicinity

of the nominal operating pressure pn.

Hence, as in [8], in the current study we model the cornering force FKλ by the equation

FKλ (p̃) = FKλ = kλ tan−1 (7.0 tan (α)) cos
(

0.95 tan−1 (7.0 tan (α))
)

Fz , (8)

where the constants kλ (p̃) represents the lateral stiffness of the tire and the slip angle α is related to the

lateral deformation λ by α = tan−1 (λ/L (p̃)).

I.A.4. Self-aligning moment

The self-aligning moment is a direct consequence of the cornering force FKλ acting at an offset, called the

pneumatic trail tp, from the center of the tire contact patch. Now we investigate how tp is influenced by

the changes in the tire inflation pressure. Figure 4(a) shows the normalized self-aligning moment M̃Kα for

three different normalized vertical loads F̃z on the gear and for three different normalized pressures. One

of the apparent features in the graph is that the slip angle α at which the self-aligning moment changes its

direction from being negative to positive is practically constant for all inflation pressures and vertical loads.

The self-aligning moment variations increase with an increase in the vertical load. Specifically, the maximum

magnitude of the moment, which occurs at α ≈ 6o, increases with the vertical load. The self-aligning moment

is significantly influenced by changes in the pressure. Specifically, in Fig. 4(a), the maximum magnitude of

the moment for a given vertical load has largest magnitude for p̃ = 0.7 and least for p̃ = 1.0. Therefore, the
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Figure 4. Normalized self-aligning moment M̃Kα as a function of slip angle α. Here, we present experimental data for

three different vertical loads F̃z = 0.017 (squares), F̃z = 0.029 (triangles), F̃z = 0.042 (circles) on the gear and for three
different normalized pressures p̃ = 0.7 (solid), p̃ = 0.85 (dot-dashed), and p̃ = 1.0 (dashed).

figure suggests that as inflation pressure increases the self-aligning moment decreases. This behavior can be

explained as follows: the pneumatic trail tp, which is the moment arm to generate the self-aligning moment,

decreases with increase in the tire inflation pressure. Since the cornering force is assumed to be independent

of the tire inflation pressure, a reduction in the pneumatic trail tp implies a reduction in the self-aligning

moment.

For small slip angles, the cornering force acts behind the center of the contact patch, so that the self-

aligning moment is stabilizing. Beyond a certain slip angle (of approx. 10o − 15o, see Fig. 4(a)) the

self-aligning moment changes direction and becomes a destabilizing moment. This is a direct consequence of

the shifting of the point of action of the cornering force from behind the center of the contact patch to the

front.

In order to quantify the effect of changing tire inflation pressure on self-aligning moment, we consider its

maximum value as a function of tire inflation pressure. Here, it is sufficient to quantify just the maximum

value or the slope at α = 0. Figure 4(b) shows the maximum normalized self-aligning moment as a function

of the normalized tire inflation pressure. The graph shows that the increase in the maximum normalized

self-aligning moment with the tire inflation pressure is linear in nature. Note that the data for the second

tire also shows the same trend.

Using the data plotted in Fig. 4(b) we are able to determine the standard model of MKα (p̃) from8, 12 as

MKα (p̃) =











(1.0823p̃− 2.0539) αm
π

sin
(

α π
αm

)

Fz if |α| ≤ αm,

0 if |α| > αm.

(9)
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deflection

force

b

bmax

Figure 5. Schematic of a force-deflection curve where the hysteresis is due to damping.

I.A.5. Torsional and lateral damping

Damping, in general, is a difficult quantity to measure in any given system. Especially in the case of an

aircraft tire, whose natural frequency of oscillation changes with the tire inflation pressure, determining

the damping coefficient is quite challenging. Typically, damping characteristics are measured using a force-

deflection curve, which forms a hysteresis loop due to damping, as shown in Fig. 5. The graph shows a

dashed curve that represents a force-deflection curve in the case of a viscous damper. For an ideally elliptical

force-deflection curve, the damping coefficient is given by

cc =
b

bmax
. (10)

However, in the case of aircraft tires, due to the complex nature of the inflated tires the force-deflection

curves deviate from the elliptical nature of the dashed curve to take the form of the solid curve in Fig. 5. In

such cases using Eq. (10) may yield a reasonable estimate of the damping coefficient, but is not necessarily

very accurate. Despite its accuracy limitations Eq. (10) is commonly used to compute damping coefficients

in the case of aircraft tires.

The two available sets of tire data exhibit similar force-deflection hysteresis loops and again, one is used to

define the model. The experimental data in Fig. 6 representing torsional and lateral damping coefficients was

obtained with Eq. (10) from hysteresis loops measured for two different tire pressures and several different

vertical loads on the wheel. Figure 6(a) shows the lateral damping coefficient cl as a function of the normalized

pressure p̃ for different vertical loads. Since the experimental data is only available for two values of tire

inflation pressure, we model the dependence of cl on tire inflation pressure by a linear relationship; given

in Eq. (12), this modeling is supported by experimental observations by Smiley and Horne.11 Figure 6(b)

shows the lateral damping coefficient cl as a function of the normalized vertical load F̃z for two different
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normalized load values F̃z . Panel (b) shows the same lateral damping coefficient cl as a function of normalized vertical

load F̃z . The data is presented for two different inflation pressures p̃ = 1.2 (triangles) and p̃ = 1.0 (squares).
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Figure 7. Panel (a) shows torsional damping coefficient ct as a function of normalized tire inflation pressure p̃ for five

different normalized load F̃z values. Panel (b) shows the same torsional damping coefficient ct as a function of the

vertical load F̃z . The data is presented for two different inflation pressures p̃ = 1.2 (triangles) and p̃ = 1.0 (squares).

normalized pressures p̃ = 1.2 and p̃ = 1.0. The graph suggests that, for a given vertical load, the lateral

damping coefficient cl corresponding to the nominal pressure p̃ = 1.0 is larger than for p̃ = 1.2.

Similarly, Fig. 7(a) shows the torsional damping coefficient ct as a function of the normalized pressure

p̃ for different vertical loads. Again, we approximate the dependence of ct on tire inflation pressure with a

linear relationship. On the other hand Fig. 7(b) shows the torsional damping coefficient ct as a function of

the normalized vertical load F̃z for two different normalized pressures p̃ = 1.2 and p̃ = 1.0. Unlike in the

case of lateral damping, the graph suggests that, for a given vertical load, the torsional damping coefficient

ct corresponding to the nominal pressure p̃ = 1.0 is smaller than for p̃ = 1.2. This behavior is very much

dependent on the thickness of the tire and also the tire ply type. Overall, a combined effect of the air (or

nitrogen) inside the tire along with the elastic properties of the tire create a damping effect.

Using the data from Fig. 6 and Fig. 7 we model the moment MDαδ (p̃) in Eq. (2) due to the lateral

13 of 21

American Institute of Aeronautics and Astronautics



damping of the tire given by

MDαδ (p̃) = cl (p̃)
kλ (p̃) h2 Fz

V
δ̇, (11)

where the lateral damping coefficient cl is given by

cl = 0.1909 p̃+ 0.3609. (12)

Similarly, the moment MDαψ (p̃) in Eq. (1) due to the torsional damping of the tire is represented by the

equation

MDαψ (p̃) = ct (p̃)
kα (p̃) h2 Fz

V
ψ̇, (13)

where the torsional damping coefficient ct is given by

ct = 0.1432 p̃+ 0.1067. (14)

II. Bifurcation analysis of shimmy oscillations

We now perform a numerical bifurcation analysis of the dynamical system given by Eqs. (1)–(3) with

the software package auto.14 The main objective is to investigate the influence of tire inflation pressure on

shimmy oscillations, with a special focus on the interaction between the torsional and lateral bending modes

of the nose landing gear. In order to achieve this, we compute bifurcation curves that indicate the onset of

shimmy oscillations as a function of aircraft velocity V and vertical force Fz . Specifically, we compute two-

parameter bifurcation diagrams in the (V, Fz) parameter plane for discrete and fixed values of the normalized

tire inflation pressure p̃.
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Figure 8. (a) Two parameter bifurcation diagram in the (V, Fz)-plane for Eqs. (1)–(3) for tire inflation pressure p̃ = 1.0.
In the unshaded (white) region the landing gear is shimmy-free and the straight-line rolling solution is stable. Right-
slanted shading indicates torsional shimmy oscillations, and left-slanted shading indicates lateral shimmy oscillations.
(b) and (c) Frequency spectra of the tire motion at the parameter values corresponding to points (b) and (c) in panel
(a).
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Our starting point is the bifurcation diagram for the nominal pressure case p̃ = 1.0, which is shown in

Fig. 8(a). It shows a number of bifurcation curves that divide the (V, Fz)-plane into regions corresponding

to different behavior of the landing gear. The landing gear is stable and free of shimmy in the unshaded

(white) part and it is unstable and experiences shimmy oscillations in the shaded region of Fig. 8(a). As

we cross into the shaded region from the unshaded part via the curves Ht or Hl, either torsional or lateral

bending mode undamps, giving rise to shimmy oscillations. This undamping of oscillations with a change in

a parameter is called Hopf bifurcation. Accordingly, the Hopf bifurcation curve Ht corresponds to the onset

of torsional shimmy oscillations that are dominated by the torsional mode; they exit in the right-slanted

shading region. A frequency spectrum of the tire motion at a typical point (b) in the right-slanted shaded

region of torsional shimmy is shown in Fig. 8(b). It shows a peak at the frequency ft = 9.1 Hz, which

corresponds to the torsional vibrational mode impling its dominance in the landing gear motion. The curve

Ht forms a closed loop in the parameter space, which is often referred to as an isola. The isola Ht contains a

solid-line segment of supercritical Hopf bifurcations, where the emerging shimmy oscillations are stable and

a dashed-line segment of subcritical Hopf bifurcations that give rise to unstable shimmy oscillations. For

parameter values corresponding to subcritical Hopf bifurcations the landing gear may experience a sudden

jump to high-amplitude shimmy oscillations from the stable state.8 The transition between the sub- and

supercritical segments is marked by two codimension-two bifurcation points called degenerate Hopf points

DH , where a saddle-node curve SL emerges from the Hopf curve Ht. Figure 8(a) shows that, together with

the supercritical part of Ht, the saddle-node curve SL forms the boundary for torsional shimmy oscillations.

Figure 8(a) also shows a second Hopf bifurcation curve Hl. It represents the onset of lateral shimmy

oscillations, found in the left-slanted shading region, where the lateral bending mode is dominant. Lateral

shimmy oscillations occur in the region bounded below by the lateral Hopf curve Hl and also by the curve

Tl (which will be discussed later), and they exist for all sufficiently large values of Fz . A frequency spectrum

of the tire motion at a typical point (c) in the left-slanted shaded region of lateral shimmy oscillations is

shown in Fig. 8(c); the peak at the frequency fl = 11.8 Hz corresponds to the lateral mode, which implies

its dominance in the landing gear motion. The two Hopf curves Ht and Hl intersect at two codimension-two

double Hopf bifurcation points HH , which give rise to the torus bifurcation curves Tt and Tl. The subscript

here refers to a torus bifurcation of a periodic orbit emerging from the Hopf curve Ht or Hl respectively. This

suggests that quasiperiodic shimmy oscillations may occur for certain parameter values of V and Fz in the

vicinity of the torus curves Tt and Tl. Quasiperiodic shimmy oscillations are oscillations of the landing gear

in which frequency components of both the torsional and lateral bending modes are observed. In a frequency

spectrum quasiperiodic shimmy oscillations are identified by two distinct peaks at both ft and fl as well

as their differences and sums; see8 for details. Finally, the region in the (V, Fz)-plane that contains both
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left- and right-slanted shading (meshed region) indicates bistability, where both the torsional and lateral

shimmy oscillations are stable. In this region, which steady state solution is observed depends on the initial

condition.

Figure. 9(a)–(e) shows the change in the bifurcation curves Ht, Hl and SL as the tire inflation pressure

is increased from p̃ = 0.6 to p̃ = 1.4 in steps of 0.2. Figure 9(c), is the case for p̃ = 1.0 from Fig. 9.

In order to facilitate comparison, we only show the curves Ht, Hl and SL in Fig. 9. Furthermore, in the

panels of Fig. 9 the white region indicates a shimmy-free motion of the landing gear and the gray shaded

region represents an unstable landing gear experiencing shimmy oscillations. The effect of the tire inflation

pressure is apparent from extent of the gray region as the bifurcation curves in the (V, Fz)-plane change

with p̃. Specifically, Fig. 9 shows that, as the tire inflation pressure is increased, the white region increases

in size. This indicates that the landing gear is stable for a larger operating region in the (V, Fz)-plane when

the tire inflation pressure is increased. In the case of the torsional Hopf curve Ht, for large tire inflation

pressure, the area in the (V, Fz)-plane bounded by the isola Ht decreases. Moreover, the saddle-node curve

SL, which forms the upper bound for the torsional shimmy oscillations, is always in close proximity of the

isola Ht. This means that the range of velocities at which torsional shimmy oscillations occur decreases with

an increase in the tire inflation pressure.

The tire inflation pressure also has a significant effect on the Hopf curve Hl corresponding to lateral

shimmy oscillations. Specifically, as the tire inflation pressure is increased, the vertical load Fz at which the

lateral Hopf curve Hl levels off (at ≈ 50 [m/s]) also increases. For example, while for p̃ = 0.6 the curve Hl

levels at Fz ≈ 140 [kN], it does so only at Fz ≈ 370 [kN] for tire inflation pressure p̃ = 1.4. Indeed as the

tire inflation pressure is increased, the curve Hl moves towards higher values of the vertical load Fz , thereby

increasing the white area in the (V, Fz)-plane where the landing gear is free of lateral shimmy oscillations.

Figure 9 also shows an influence of tire inflation pressure on the region in the (V, Fz)-plane corresponding

to sub- and supercritical Hopf bifurcations of torsional shimmy oscillations. As the tire inflation pressure is

increased from p̃ = 0.6 to p̃ = 1.4, the dashed part of the isola Ht that represents subcritical torsional Hopf

bifurcations decreases in length, that is, the degenerate Hopf points DH come closer to each other with an

increase in p̃. The distance between the two points DH eventually shrinks to zero and the two points vanish

for p̃ = 1.4, making the entire isola a set of supercritical Hopf bifurcations. This suggests that for higher

than nominal tire inflation pressures the landing gear is less susceptible to sudden jumps to high-amplitude

shimmy oscillations in this region of parameters.

Since p̃ is an additional parameter, it is convenient to summarize our findings by showing a three-

parameter bifurcation diagram in the (p̃, V, Fz)-space. It is shown in Fig. 10 and consists of surfacesHt andHl

of Hopf bifurcations and a surface SL of saddle-node bifurcations. This three-parameter bifurcation diagram
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can be builtup from the respective bifurcation curves Ht, Hl and SL for fixed values of p̃. Figure 10(a) shows

these bifurcation curves in the (p̃, V, Fz)-space when the tire inflation pressure is changed from p̃ = 0.6 to

p̃ = 1.4 in steps of 0.1. Figure 10(b) shows surfaces of bifurcations that correspond to the bifurcation curves

in panel (a). In the view shown in Fig. 10(b), the region in the (p̃, V, Fz)-space below the surfaces Ht and

Hl corresponds to a shimmy-free landing gear; the region above these surfaces, towards increasing values

of the vertical force Fz , corresponds to shimmy oscillations; compare with Fig. 9. The intersection of the

two Hopf surfaces Ht and Hl forms the black curves HH , which are the loci of the codimension-two double

Hopf points HH ; (see also Figs. 8 and 9). Furthermore, the saddle-node surface SL connects with the Hopf

surface Ht along the gray curves DH .

The data and bifurcation curves presented in Fig. 9 are slices of the surfaces presented in Fig. 10(b) at

the particular values of tire inflation pressure p̃. However, the surfaces can also be sliced, for example, for a

particular velocity V to obtain bifurcation curves in the (p̃, Fz)-plane, or for a particular vertical force Fz to

obtain bifurcation curves in the (p̃, V )-plane. This flexible representation of bifurcation data can be useful

in the design and operational stages to evaluate and improve the performance of an aircraft landing gear.

Taken together, Fig. 9 and Fig. 10 clearly show that the landing gear is more stable for higher than

nominal inflation pressures for the type of tire considered here. That is, shimmy oscillations occur on a

smaller range of V and Fz values for the case of higher inflation pressures (p̃ > 1.0) than for the case of

lower than nominal inflation pressures (p̃ < 1.0). This conclusion is in agreement with the work by Klyde,

Magdaleno and Reinsberg,7 who suggest that aircraft exhibit better ground handling properties for higher

than nominal inflation pressures.

III. Summary and conclusions

We modeled and analyzed a nose landing gear typical of a commercial passenger aircraft in order to

investigate the effect of tire inflation pressure on shimmy oscillations. Specifically, we developed a five-

dimensional landing gear model in which the tire properties contact patch length, relaxation length, cornering

force, self-aligning moment, and torsional and lateral damping coefficients change with the tire inflation

pressure. In order to model the effect of inflation pressure on tire characteristics, we made use of experimental

data obtained from two radial tires that are used on long haul airliner nose wheels. The data was presented

in normalized quantities, which allows us to find empirical relationships between the tire inflation pressure

and tire properties. We then performed a numerical bifurcation analysis of the landing gear model and

compute two-parameter bifurcation diagrams in the velocity and vertical force plane for five different inflation

pressures. Specifically, we computed Hopf (also torus and saddle-node in the case of p̃ = 1.0) curves that

divide the parameter space into regions of stable operation of the landing gear. This information was also

17 of 21

American Institute of Aeronautics and Astronautics



presented in the condensed form as a single three-parameter bifurcation diagram.

From our bifurcation analysis we conclude that tire inflation pressure has a significant influence on

shimmy oscillations. Specifically, we find that, as the tire inflation pressure is increased, both torsional and

lateral bending vibrational modes become more stable in the operational ranges of velocity and vertical force,

thereby decreasing the susceptibility of the landing gear to shimmy oscillations. This behavior is apparent

by the shrinking of the isola corresponding to torsional shimmy oscillations and the upward movement of the

Hopf curve corresponding to the lateral shimmy oscillations. Also, as the tire inflation pressure is increased

the landing gear is less susceptible to sudden jumps to high-amplitude shimmy oscillations.

One of the underlying assumptions of this work is that the normalized experimental data relating the

tire inflation pressure and tire properties can be used for larger as well as smaller aircraft tires. With

normalization and scaling, we applied experimental data obtained from larger aircraft tires to analyze shimmy

oscillations in aircraft with smaller tires. To validate this modeling assumption, we would require a large

amount of experimental and numerical data, which is very hard to obtain. However, the model that we

developed in this work is quite generic in the context of investigating the effect of tire inflation pressure on

shimmy oscillations. By merely altering the equations for tire properties to suit a specific tire model, one

can use the landing gear model presented here to investigate shimmy oscillations in a wide variety of aircraft

landing gears. Future studies will also include investigating a dual-wheel configuration in which tires on

both the wheels can be inflated differently. Furthermore, the model used here can be modified to represent

a main landing gear.
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