198 research outputs found

    Assessment of the Contribution of WorldView-2 Strategically Positioned Bands in Bracken fern (Pteridium aquilinum (L.) Kuhn) Mapping

    Get PDF
    In the eThekwini Metropolitan Area, mitigation of the Bracken fern (Pteridium aquilinum (L.) Kuhn) invasion within the KwaZulu-Natal Sandstone Sourveld (KZNSS) has been identified as a major environmental priority. To facilitate informed interventions, reliable Bracken fern spatial distribution is necessary. Earlier efforts to map the fern using lower spatial and spectral resolution imagery have been unsuccessful. Consequently, this study sought to determine the reliability of the “new generation” World View-2 (WV-2) image characterised by higher spatial and spectral resolution in delineating the fern invaded areas. The eight band WV2 image was atmospherically corrected and spectrally resized as the SPOT-5 wavebands, additional bands and all bands. The classification accuracy was compared to results from the SPOT-5 image. Results showed that classification based on WV-2s additional bands had superior classification accuracy than the rest of the categories. Furthermore, classification based on all the WV-2s bands and the traditional bands perfomed better than the SPOT-5 image in delineating areas covered by the fern. These findings indicate the value of of the “new generation” imagery characterised by higher spatial and spectral resolution in improving the accuracy of the fern invaded landscapes

    Mainstreaming Underutilized Indigenous and Traditional Crops into Food Systems: A South African Perspective

    Get PDF
    Business as usual or transformative change? While the global agro-industrial food system is credited with increasing food production, availability and accessibility, it is also credited with giving birth to ‘new’ challenges such as malnutrition, biodiversity loss, and environmental degradation. We reviewed the potential of underutilized indigenous and traditional crops to bring about a transformative change to South Africa’s food system. South Africa has a dichotomous food system, characterized by a distinct, dominant agro-industrial, and, alternative, informal food system. This dichotomous food system has inadvertently undermined the development of smallholder producers. While the dominant agro-industrial food system has led to improvements in food supply, it has also resulted in significant trade-offs with agro-biodiversity, dietary diversity, environmental sustainability, and socio-economic stability, especially amongst the rural poor. This challenges South Africa’s ability to deliver on sustainable and healthy food systems under environmental change. The review proposes a transdisciplinary approach to mainstreaming underutilized indigenous and traditional crops into the food system, which offers real opportunities for developing a sustainable and healthy food system, while, at the same time, achieving societal goals such as employment creation, wellbeing, and environmental sustainability. This process can be initiated by researchers translating existing evidence for informing policy-makers. Similarly, policy-makers need to acknowledge the divergence in the existing policies, and bring about policy convergence in pursuit of a food system which includes smallholder famers, and where underutilized indigenous and traditional crops are mainstreamed into the South African food system

    Potential decline in the distribution and food provisioning services of the mopane worm (Gonimbrasia belina) in southern Africa

    Get PDF
    The mopane worm (Gonimbrasia belina) is an edible insect distributed across southern Africa. As a culturally important source of food, the mopane worm provides nutrition, livelihoods and improves wellbeing for rural communities across its range. However, this is strong evidence that insect populations are declining worldwide, and climate change is likely to cause many insect species to shift in their distributions. For these reasons, we aimed to model how the ecosystem service benefits of the mopane worm are likely to change in the coming decades. We modelled the distribution of the mopane worm under two contrasting climate change scenarios (RCPs 4.5 and 8.5). Moreover, given that the mopane worm shows strong interactions with other species, particularly trees, we incorporated biotic interactions in our models using a Bayesian network. Our models project significant contraction across the species’ range, with up to 70% decline in habitat by the 2080s. Botswana and Zimbabwe are predicted to be the most severely impacted countries, with almost all habitat in Botswana and Zimbabwe modelled to be lost by the 2080s. Decline of mopane worm habitat would likely have negative implications for the health of people in rural communities due to loss of an important source of protein as well as household income provided by their harvest. Biogeographic shifts therefore have potential to exacerbate food insecurity, socio-economic inequalities, and gender imbalance (women are the main harvesters), with cascading effects that most negatively impact poor rural communities dependent on natural resourc

    The importance of indirect cues for white-browed sparrow-weaver (Plocepasser mahali) risk assessment

    Get PDF
    Both direct cues that provide information about the actual presence of a predator and indirect environmental cues that provide information about the probability of encountering a predator may be used by animals assessing predation risk, but relatively few studies manipulate both simultaneously to study their relative importance. We conducted two experiments to study the foraging decisions of white-browed sparrow-weavers (Plocepasser mahali). The first experiment manipulated both direct and indirect cues in a feeding array by simultaneously placing feeding stations at different distances from humans (to manipulate direct risk) and from protective cover (to manipulate indirect risk). Weaver foraging was influenced more by indirect risk than by direct risk. The second experiment aimed to determine if weaver’s indirect risk assessment was sensitive to variation in benefits. We set two feeding stations at different distances from cover but the same distance from the human observers and systematically increased the amount of food at the station farther from cover. Weavers far from cover initially foraged at higher rates than those close to cover, but the addition of food reduced the foraging rate. Together, our results illustrate that weaver foraging decisions are sensitive to variation in risk and that indirect cues are relatively more important than direct cues

    Group Dynamics of Zebra and Wildebeest in a Woodland Savanna: Effects of Predation Risk and Habitat Density

    Get PDF
    .Using generalized linear models, we examined the relative importance of habitat type (differing in vegetation density), probability of encountering lion (based on utilization distribution of all individual lions in the reserve), and season in predicting group size and composition. We found that only in open scrub habitat, group size for both ungulate species increased with the probability of encountering lion. Group composition differed between the two species and was driven by habitat selection as well as predation risk. For both species, composition of groups was, however, dominated by males in open scrub habitats, irrespective of the probability of encountering lion.Distribution patterns of wildebeest and zebra groups at the landscape level directly support the theoretical and empirical evidence from a range of taxa predicting that grouping is favored in open habitats and when predation risk is high. Group composition reflected species-specific social, physiological and foraging constraints, as well as the importance of predation risk. Avoidance of high resource open scrub habitat by females can lead to loss of foraging opportunities, which can be particularly costly in areas such as KGR, where this resource is limited. Thus, landscape-level grouping dynamics are species specific and particular to the composition of the group, arising from a tradeoff between maximizing resource selection and minimizing predation risk

    A systems analysis and conceptual system dynamics model of the livestock-derived food system in South Africa : a tool for policy guidance

    Get PDF
    Global food production systems are currently under scrutiny, in particular the health, nutrition, and environmental impacts of livestock-derived food (LDF). Despite South Africa’s recent socio­economic transformation and increased per-capita LDF consumption, the triple burden of malnutri­tion persists. Policy responses to such complex problems often fail because of linear thinking with short-term goals. However, a systems approach helps identify root causes, feedback mechanisms, potential unintended consequences, and opportu­nities for integrated, durable solutions. Participa­tion in the systems-thinking process improves stakeholder understanding and buy-in. Our par­ticipatory workshop facilitated the development of a systems map for South African LDF, identifying key system elements, linkages, and nexus points. The latter included climate change, land access and management, livestock management and produc­tivity, farming systems, food safety, policy articula­tion, agricultural knowledge, and income. Based on these findings, and an overview of related litera­ture, we produced a conceptual system dynamics model of the LDF system. We identified key vari­ables and causal relationships, vicious and virtuous loops, system archetypes, conceptual stock and flows, and links to Sustainable Development Goals. The LDF system is complex and dynamic, with a dominance of commercial enterprises across agriculture and food retail, presenting barriers for small and medium-scale individuals. Other key elements relate to population growth and urbaniza­tion, land access, deregulation of international trade, climate change vulnerability, feed production limitations, and food safety. Our work provides a unique reference for policymakers, identifying the need for deep structural change, highlighting the possible unintended consequences, and thereby mitigating the risk of system destabilization

    Reconstructing grazer assemblages for protected area restoration

    Get PDF
    Protected area management agencies often struggle to reliably reconstruct grazer assemblages due to a lack of historical distribution data for their regions. Wrong predictions of grazing assemblages could potentially affect biodiversity negatively. The objective of the study was to determine how well grazing herbivores have become established since introduction to the Mkambati Nature Reserve, South Africa, how this was influenced by facilitation and competition, and how indigenous grazer assemblages can best be predicted for effective ecological restoration. Population trends of several grazing species were investigated in in order to determine how well they have become established since introduction. Five different conceivable grazing assemblages reflecting a range of approaches that are commonly encountered during conservation planning and management decision making were assessed. Species packing was used to predict whether facilitation, competition or co-existence were more likely to occur, and the species packing of the different assemblages were assessed using ANCOVA. Reconstructing a species assemblage using biogeographic and biological information provides the opportunity for a grazer assemblage that allows for facilitatory effects, which in turn leads to an ecosystem that is able to maintain its grazer assemblage structure. The strength of this approach lies in the ability to overcome the problem of depauperate grazer assemblages, resulting from a lack of historical data, by using biogeographical and biological processes, to assist in more effectively reconstructing grazer assemblages. Adaptive management of grazer assemblage restoration through reintroduction, using this approach would further mitigate management risks

    Seasonal diet changes in elephant and impala in mopane woodland

    Get PDF
    Elephant and impala as intermediate feeders, having a mixed diet of grass and browse, respond to seasonal fluctuations of forage quality by changing their diet composition. We tested the hypotheses that (1) the decrease in forage quality is accompanied by a change in diet from more monocots in the wet season to more dicots in the dry season and that that change is more pronounced and faster in impala than in elephant; (2) mopane (Colophospermum mopane), the most abundant dicot species, is the most important species in the elephant diet in mopane woodland, whereas impala feed relatively less on mopane due to the high condensed tannin concentration; and (3) impala on nutrient-rich soils have a diet consisting of more grass and change later to diet of more browse than impala on nutrient-poor soils. The phosphorus content and in vitro digestibility of monocots decreased and the NDF content increased significantly towards the end of the wet season, whereas in dicots no significant trend could be detected. We argue that this decreasing monocot quality caused elephant and impala to consume more dicots in the dry season. Elephant changed their diet gradually over a 16-week period from 70% to 25% monocots, whereas impala changed diets rapidly (2-4 weeks) from 95% to 70% monocots. For both elephants and impala, there was a positive correlation between percentage of monocots and dicots in the diet and the in vitro digestibility of these forage items. Mopane was the most important dicot species in the elephant diet and its contribution to the diet increased significantly in the dry season, whereas impala selected other dicot species. On nutrient-rich gabbroic soils, impala ate significantly more monocots than impala from nutrient-poor granitic soils, which was related to the higher in vitro digestibility of the monocots on gabbroic soil. Digestibility of food items appears to be an important determinant of diet change from the wet to the dry season in impala and elephants

    Cats, connectivity and conservation: incorporating datasets and integrating scales for wildlife management

    Get PDF
    Understanding resource selection and quantifying habitat connectivity are fundamental to conservation planning for both land-use and species management plans. However, datasets available to management authorities for resource selection and connectivity analyses are often highly limited and fragmentary. As a result, measuring connectivity is challenging, and often poorly integrated within conservation planning and wildlife management. To exacerbate the challenge, scale-dependent resource use makes inference across scales problematic, resource use is often modelled in areas where the species is not present, and connectivity is typically measured using a source-to-sink approach, erroneously assuming animals possess predefined destinations. Here, we used a large carnivore, the leopard Panthera pardus, to characterise resource use and landscape connectivity across a vast, biodiverse region of southern Africa. Using a range of datasets to counter data deficiencies inherent in carnivore management, we overcame methodological limitations by employing occupancy modelling and resource selection functions across three orders of selection, and estimated landscape-scale habitat connectivity – independent of a priori source and sink locations – using circuit theory. We evaluated whether occupancy modelling on its own was capable of accurately informing habitat connectivity, and identified conservation priorities necessary for applied management. We detected markedly different scale-dependent relationships across all selection orders. Our multi-data, multi-scale approach accurately predicted resource use across multiple scales and demonstrates how management authorities can more suitably utilise fragmentary datasets. We further developed an unbiased landscape-scale depiction of habitat connectivity, and identified key linkages in need of targeted management. We did not find support for the use of occupancy modelling as a proxy for landscape-scale habitat connectivity and further caution its use within a management context. Synthesis and applications. Maintaining habitat connectivity remains a fundamental component of wildlife management and conservation, yet data to inform these biological and ecological processes are often scarce. We present a robust approach that incorporates multi-scale fragmentary datasets (e.g. mortality data, permit data, sightings data), routinely collected by management authorities, to inform wildlife management and land-use planning. We recommend that management authorities employ a multi-data, multi-scale connectivity approach—as we present here—to identify management units at risk of low connectivity

    Fine-Scale Tracking of Ambient Temperature and Movement Reveals Shuttling Behavior of Elephants to Water

    Get PDF
    Movement strategies of animals have been well studied as a function of ecological drivers (e.g., forage selection and avoiding predation) rather than physiological requirements (e.g., thermoregulation). Thermal stress is a major concern for large mammals, especially for savanna elephants (Loxodonta africana), which have amongst the greatest challenge for heat dissipation in hot and arid environments. Therefore, elephants must make decisions about where and how fast to move to reduce thermal stress. We tracked 14 herds of elephant in Kruger National Park (KNP), South Africa, for 2 years, using GPS collars with inbuilt temperature sensors to examine the influence of temperature on movement strategies, particularly when accessing water. We first confirmed that collar-mounted temperature loggers captured hourly variation in relative ambient temperatures across the landscape, and, thus, could be used to predict elephant movement strategies at fine spatio-temporal scales. We found that elephants moved slower in more densely wooded areas, but, unexpectedly, moved faster at higher temperatures, especially in the wet season compared to the dry season. Notably, this speed of movement was highest when elephants were approaching and leaving water sources. Visits to water showed a periodic shuttling pattern, with a peak return rate of 10–30 h, wherein elephants were closest to water during the hotter times of the day, and spent longer at water sources in the dry season compared to the wet season. When elephants left water, they showed low fidelity to the same water source, and traveled farther in the dry season than in the wet season. In KNP, where water is easily accessible, and the risk of poaching is low, we found that elephants use short, high-speed bursts of movement to get to water at hotter times of day. This strategy not only provides the benefit of predation risk avoidance, but also allows them to use water to thermoregulate. We demonstrate that ambient temperature is an important predictor of movement and water use across the landscape, with elephants responding facultatively to a “landscape of thermal stress.
    corecore