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Abstract 
In the eThekwini Metropolitan Area, mitigation of the Bracken fern (Pteridium aquilinum (L.) 

Kuhn) invasion within the KwaZulu-Natal Sandstone Sourveld (KZNSS) has been identified as a 

major environmental priority. To facilitate informed interventions, reliable Bracken fern spatial 

distribution is necessary. Earlier efforts to map the fern using lower spatial and spectral 

resolution imagery have been unsuccessful. Consequently, this study sought to determine the 

reliability of the “new generation” World View-2 (WV-2) image characterised by higher spatial 

and spectral resolution in delineating the fern invaded areas. The eight band WV2 image was 

atmospherically corrected and spectrally resized  as the SPOT-5 wavebands, additional bands 

and all bands. The classification accuracy was compared to results from the SPOT-5 image. 

Results showed that classification based on WV-2s additional bands had superior classification 

accuracy than the rest of the categories. Furthermore, classification based on all the WV-2s 

bands and the traditional bands perfomed better than the SPOT-5 image in delineating areas 

covered by the fern. These findings indicate the value of of the “new generation” imagery 

characterised by higher spatial and spectral resolution in improving the accuracy of the fern 

invaded landscapes.  
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1. Introduction 

     The KwaZulu-Natal Sandstone Sourveld (KZNSS) is one of South Africa’s most important 

grassland ecosystems that provide both social and ecological services to the eThekwini 

Metropolitan Municipality in KwaZulu-Natal Province, South Africa. In its pristine condition, 

the grassland is known to be rich in species diversity and provides among other services soil 

formation, control of erosion, carbon sequestration and recreational opportunities 

(EThekwiniMunicipality 2012/2013; Msibi 2011). However, in the recent past, the Sourveld has 

been converted to, among others cultivated land, commercial plantations, alternative vegetation 

types and urban development. According to Mucina and Rutherford (2006), only 0.2% of the 

sourveld is under statutory protection,  consequently, long-term sustainability of the vegetation 

is in doubt.  

     Encroachment of shrub into the KZNSS landscape has been noted in many parts of the  

Province (Hudak and Wessman 2001; O'Connor 2005; Wigley et al. 2009). The Bracken fern 

(Pteridium aquilinum (L.) Kuhn), an aggressive invasive species, has in the recent past been 

identified as the biggest threat to the KZNSS’s remnant patches (Roos et al. 2010; Schneider and 

Fernando 2010; Msibi 2011). The fern is known to supress resident species, paving way for the 

emergence of woody plants and forest pioneers (Msibi 2011). Its extensive rooting system enables 

it to outcompete other species for moisture and nutrients and its typical dense senesced cover 

impedes germination and growth of other plants. The emerging threats to the KZNSS and its 

value within eThekwini Municipality necessitates an inventory of the distribution of the fern to 

facilitate informed intervention.  

    Traditionally, techniques based on field surveys, aerial photography and review of historical 

literature among others have been used to determine spatial ecological extents, however, these 

techniques are often costly, tedious and time consuming (Xie et al. 2008). In the recent past, due 

to its wide spatio-temporal resolution, availability and lower cost per unit area, remotely sensed 

data has emerged as a viable tool for land cover mapping (Foody, 2002; Lu et al., 2004; Liu et al. 

2004; Kavzoglu and Colkesen 2009;  Abd El-Kawy et al. 2011).  

     To date, land cover mapping studies have comonly used low and medium spatial resolution 

imagery with limited spectral characteristics. These include SPOT - Cohen and Spies (1992), 

Kanellopoulos et al. (1992), Landsat - Wulder et al. (2008), Giri et al. (2003), Vogelmann et al. 

(1998), ASTER - Stefanov and Netzband (2005) French et al. (2008) and MODIS - Stefanov and 
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Netzband (2005). However, Congalton (1991) and  Foody (2002) note that the low spatial and 

spectral resolutions that characterise such imagery impede reliable delineation of land cover 

types, particularly in highly heterogeneous landscapes characterised by small land cover types. 

     Recently, hyperspectral imagery has shown great potential in mapping heterogeneous 

landscapes (Dalponte et al. 2009; Pignatti et al. 2009; Petropoulos et al. 2012; Petropoulos et al. 

2012). However, wide adoption of hyperspectral imagery has been impeded by, among others 

high cost per unit area, availability and band redundancy (Dalponte et al. 2009, Mutanga et al. 

2012). 

     Despite the potential of remote sensing in the fern mapping, there is paucity in literature on its 

successful application (Tong et al. 2006). Fuller et al. (1994) for instance mapped a Bracken 

infested landscape using Landsat TM. Whereas a satisfactory overall classification accuracy 

between 80-85% was achieved in other land cover types, the fern classification accuracy was less 

than  8%. A number of authors (Birnie and Miller 1986; Miller et al. 1989; Miller et al. 1990; 

Pakeman et al. 1996 among others) attribute such low classification accuracy to the fragmented 

patches which are often below the pixel extents of  commonly used multispectral images like 

Landsat and SPOT.  

      The emergence of “new generation” multispectral sensors such as WorldView-2 offer a 

valuable trade-off between multi/hyper spectral and low/high spatial resolution imagery 

(Mutanga et al. 2012). Their higher spatial resolution than traditional low and medium resolution 

imagery and a higher number of bands at strategic sections of the electromagnetic spectrum offer 

great potential in land cover mapping (Cho et al. 2012).  The WorldView-2 sensor for instance is 

characterised by four additional spectral bands to those contained in SPOT. The strategic location 

of these bands within the coastal blue, yellow, red-edge, and NIR2 of the electromagnetic 

spectrum is valuable for vegetation mapping (Mutanga et al. 2012; Cho et al. 2012). 

     Based on the aforementioned challenges in mapping the fern using lower spatial and spectral 

resolution imagery, this study explores the potential of new generation WV-2s additional 

strategically positioned bands in mapping the fern. 

 

2. Materials and Methods 

      This study was conducted in Giba Gorge, within eThekwini Metropolitan Municipality, 

KwaZulu-Natal, South Africa (Figure 1). Due to pressure from other land uses on the KZNSS, 
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private landowners and the Municipality started the Giba Gorge Environmental Precinct 

cooperative project to manage a common conservation area. However, currently, the biggest 

threat to the Giba Gorge Environmental Precinct is the displacement of natural habitat by other 

vegetation forms such as eucalyptus and unplanned fires. The latter has particularly been 

associated with the fern’s invasion (Lindenmayer et al. 2010).  

 

 

Figure 1: Location of Giba Gorge Environmental Precinct. 

 

    Analysis for this study was achieved using an eight band multispectral WV-2 image acquired 

in July 2012. This time was preferred to maximise separability between the fern and the 

surrounding vegetation types. This image has a 2m spatial resolution and consists of eight spectral 

bands situated in the coastal blue (0.4 – 0.45 µm), blue (0.450 – 0.510 µm), green (0.510 – 0.550 

µm), yellow (0.585 – 0.625 µm), red (0.630 – 0.690 µm), red-edge (0.705 – 0.745 µm), NIR1 

(0.770 – 0.895 µm) and NIR2 (0.860 – 1.40 µm). For comparison, a SPOT 5 image of the same 
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area was acquired. The SPOT image has 10 m spatial resolution with traditional multispectral 

bands (Blue - 0.450-0.525 µm, Green - 0.530 - 0.590 µm, Red - 0.625 - 0.695 µm and NIR - 

0.760 – 0.890 µm). The WV-2 image was atmospherically corrected in Interface Data Language 

(IDL) ENvironment for Visualising Images (ENVI) 4.7 using the QUAC (Quick Atmospheric 

Correction) procedure for a World View product. No geometric correction was performed on the 

WV-2 image as it supplied already corrected by DigitalGlobe.  Extensive ground validation data 

was collected within a week of remotely sensed data acquisition. During the field survey, four 

major land cover classes (Grass, Forest, Settlement and Water body) were recognised as the most 

frequently associated with the fern. False colour composites of the WV and SPOT5 images were 

then used in the field to directly locate and delineate the fern and the other land cover classes.  A 

map of the fern and the common land cover classes was then generated using the field data’s GPS 

readings and aerial photographs. The map was then overlaid on WV2 and SPOT5 images to create 

regions of interest (ROI) for training and validation.  Due to lack of the atmospheric correction 

procedure for SPOT-5 in ENVI 4.7, the atmospheric correction for the SPOT image was 

undertaken in IDRISI Andes using the Chavez’s COST model (Chavez, 1996). In both the image 

datasets, a total of 623 reference points was generated, 70% (436) for training and 30% (187) for 

validation.  

The WV-2 image was spectrally resized to separate the four traditional bands; blue (0.450 – 

0.510 µm), green (0.510 – 0.550 µm), red (0.630 – 0.690 µm) and NIR 1 (0.770 – 0.895 µm) 

from the additional bands; coastal blue (0.400 – 0.450 µm), yellow (0.585 – 0.625 µm), red-edge 

(0.705 – 0.745 µm) and NIR2 (0.860 – 1.40 µm). The full and separated WorldView-2 bands and 

the SPOT images were then used in delineating areas covered by the fern (Table 1). 

 

Table 1: Bands used for analysis - (coastal blue (CB), green (G), yellow (Y), red (R), red-edge 

(RE), near-infrared 1 and 2 (NIR)). 

    

Image Sensor Spatial resolution (m) Spectral bands 

A WorldView-2 2 
CB,B,G,Y,R,RE,NIR1 & 

NIR2 

B WorldView-2 2 B,G,R and NIR1 

C WorldView-2 2 CB,Y,RE and NIR2 

D SPOT 5 10 B,G,R and NIR 
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    The maximum likelihood classifier is one of the most commonly used classifiers in remote 

sensing (Wu and Shao 2002), consequently, it was adopted for this study. This classifier is based 

on pre-determined spectral characteristics based on Bayesian decision theory and assumes a 

multivariate Gaussian distribution of each land cover class and distribution. The classifier depends 

on the statistical characteristics on image training data to generate probability density functions 

(Atkinson and Lewis 2000). Typically, pixels are allocated to the most likely training data under 

consideration (Jensen 2005). The maximum likelihood classifier is computationally intensive and 

depending on the quality of training data, is known to produce reliable classification output 

(Jensen 2005). The overall, user’s and producer’s accuracies were calculated and reported for 

each image. 

 

3. Results 

     The classification based on the four strategically positioned bands (coastal blue, yellow, red-

edge and NIR2) and the SPOT 5 image produced the highest and lowest overall accuracy 

respectively (Table 2 and 3).  The overall classification accuracy based on the WV-2 eight bands 

was lower than the WV-2s strategically positioned bands while the overall accuracy based on 

WV-2s traditional bands (blue, green, red and NIR) was higher than the accuracy achieved using 

SPOT 5 image (Table 2 and 3). A summary of the fern accuracies for the four image categories 

are reported in Table 2 while the confusion matrices for the major land cover-types in the study 

area reported in Table 3 a and b.  

 

Table 2: Summary results of the maximum likelihood classification showing only the bracken 

class and its accuracies (OA-Overall Accuracy, UA–User’s Accuracy, PU- 

Producers’s Accuracy). 

   Bracken class (%) 

OA    UA          PA 

WV-2 8 bands 73.77 75.65 63 

WV-2 traditional bands 70.27 62.14 66.67 

WV-2 additional bands 79.14 97.62 91.11 

SPOT 5 66.15 58.33 58.97 
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Table 3: The confusion matrices from the maximum likelihood classification of the strategically positioned bands WV-2 image  (A) 

and SPOT 5 image (B) – (UA–User’s Accuracy, PU- Producers’s Accuracy). 

A 

 

  

 

 

 

 

 

B 

  Unclassified Bracken fern Grassland Forest Settlement Water body Totals UA 

Unclassified 0 0 0 0 0 0 0 - 

Bracken fern 0 41 0 0 1 0 42 97.62% 

Grassland 0 3 42 4 3 0 52 80.77% 

Forest 0 1 2 38 2 0 43 88.37% 

Settlement 0 0 6 17 20 0 43 46.51% 

Water body 0 0 0 0 0 7 7 100% 

Totals 0 45 50 59 26 7 187  

PA - 91.11% 84.00% 64.41% 77% 100%   

Overall accuracy = 79.14% 

 Unclassified Bracken fern Grassland Forest Settlement Water body Totals UA 

Unclassified 0 0 0 0 0 0 0      - 

Bracken fern 0 23 25 4 0 0 52 58.33% 

Grassland 0 5 25 3 9 0 42 59.52% 

Forest 0 7 0 35 0 0 42 83.33% 

Settlement 0 4 7 1 32 0 44 72.73% 

Water body 0 0 0 0 0 7 7 100% 

Totals 0 39 57 43 41 7 187  

PA - 58.97% 43.85% 81.40% 78.05% 100%   

Overall accuracy = 66.15 % 
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    Visual inspection of the classified imagery (Figure 2)  in concert with field data showed 

better classification accuracy using additional bands image, with smallest fern patches 

correctly identified in grass dominated areas (Figure 3C). Classifications based on WV-2s 

eight bands and traditional bands, Figure 2a and b respectively and the SPOT 5 image (Figure 

2 d) were less effective in delineating areas covered by the fern.  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Maximum likelihood classification on (A) eight band WV-2 image, (B) traditional 

bands image, (C) additional bands image, (D) and SPOT 5 images. 
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Figure 3: Insert of classification results (from Figure 2) on (A) eight band WV-2 image, (B) 

traditional bands image, (C) additional bands image, (D) and SPOT 5 image. 

 

4. Discussion 

    This study explored the potential of new generation WV-2 sensor in mapping the fern. The 

position and the number of bands were assessed and compared to the four bands that 

characterise the SPOT 5 image. Results revealed that WV-2 additional bands (coastal blue, 

yellow, red-edge and NIR2) can improve the mapping accuracy. A number of studies (Chen 

2010; Ozdemira and Karnielib 2011; Cho et al. 2012) note the potential of  WV-2 additional 

bands in vegetation mapping. Using pixel-based approach, Chen (2010) demonstrated that the 

four additional bands were most suitable for differentiating tree species while Cho et al. 

(2012) identified WV-2s yellow band as the most influential in vegetation mapping. Ozdemira 

and Karnielib (2011) used WV-2s image texture to predict forest structure parameters and 

identified the WV-2s additional bands  (yellow, red-edge and NIR2)as most suitable for 

predicting forest structure. Other studies (Dlamini 2010; Omar 2010) note the value of WV-

A 

D   C 

B 
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2s coastal blue and red-edge portions in distinguishing vegetation species. The absorption of 

chlorophyll in the coastal blue band facilitates discrimination based on leaf chlorophyll 

content while extended NIR (1 and 2)  broadens the spectrum for vegetation analysis.  

    Results in this study indicate suitability of the WV-2s improved spectral resolution in 

vegetation mapping in corroboration with studies reported by eg Mehner et al. (2004) and 

Holland and Aplin (2013). In comparison to other band combinations (see table 2), the 

strategically positioned bands have been known to be more sensitive to different levels of 

chlorophyll, foliage mass and leaf area index, and therefore suitable for discriminating 

different vegetation types (Daughtry and Walthall 1998; Cochrane 2000; Schmidt and 

Skidmore 2003). Consequently, these bands are valuable in discriminating the fern from other 

vegetation types.  

    The perfomance of all the WV-2s band combinations (see table 2) were superior to SPOT 

5 image in discriminating the fern. This can be attributed to the lower spatial and spectral 

resolution that characterise the SPOT 5 image. Commonly, reliable classification based on 

imagery characetrised by lower spatial and spectral resolutions is impeded by the mixed pixel 

problem. As seen in this study (Figure 2 and 4), SPOT 5 imagery may be unsuitable for 

discriminating the fern from heterogeneous landscapes due to spectral confusion and mixed 

pixel problem. 

    Results in this study show the suitability of the additional and strategically positioned bands 

in WV2 imagery for mapping the fern. Areas around Giba Gorge are generally characterised 

by mild subtropical conditions during the year. In this regard, most of the months are ideal for 

acquiring imagery for mapping the fern. Since no site site specific fern’s spectral uniqueness 

has ever been reported, use of similar data sets in diverse landscapes can be expected to 

produce similar results. However,  typically, the fern is vulnerable to extreme winter 

conditions, causing a dieback. Consequently, in areas characterised by late winter frost 

conditions, image acquisition for mapping should be captured during the winter onset as the 

fern’s folier response to extreme winter conditions may impede reliabled delineation.   

 

5.    Conclusions 

     This study explored the potential of WV-2 image data in mapping the fern. The position 

and the number of spectral bands were assessed and compared to the commonly used 

multispectral image (SPOT-5). The results showed that the additional bands in WV-2 are 

valuable in discriminating the fern from other vegetation types. The added spectral dimensions 
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in this image improve classification accuracy. It is concluded that the discrimination among 

the physical characteristic of targets mapped is enhanced by the unique combination of fine 

spatial and spectral resolutions in this imagery. Whereas the distribution of the fern was also 

observed in other band categories, their classification accuracies were relatively lower than 

those from the additional bands. Although the study was restricted to one study site, it is 

suggested that the approach be tested at other sites to verify the use of WV-2 imagery in 

mapping the fern. 
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