48 research outputs found
Coherent states and the quantization of 1+1-dimensional Yang-Mills theory
This paper discusses the canonical quantization of 1+1-dimensional Yang-Mills
theory on a spacetime cylinder, from the point of view of coherent states, or
equivalently, the Segal-Bargmann transform. Before gauge symmetry is imposed,
the coherent states are simply ordinary coherent states labeled by points in an
infinite-dimensional linear phase space. Gauge symmetry is imposed by
projecting the original coherent states onto the gauge-invariant subspace,
using a suitable regularization procedure. We obtain in this way a new family
of "reduced" coherent states labeled by points in the reduced phase space,
which in this case is simply the cotangent bundle of the structure group K.
The main result explained here, obtained originally in a joint work of the
author with B. Driver, is this: The reduced coherent states are precisely those
associated to the generalized Segal-Bargmann transform for K, as introduced by
the author from a different point of view. This result agrees with that of K.
Wren, who uses a different method of implementing the gauge symmetry. The
coherent states also provide a rigorous way of making sense out of the quantum
Hamiltonian for the unreduced system.
Various related issues are discussed, including the complex structure on the
reduced phase space and the question of whether quantization commutes with
reduction
Convex Polytopes and Quasilattices from the Symplectic Viewpoint
We construct, for each convex polytope, possibly nonrational and nonsimple, a
family of compact spaces that are stratified by quasifolds, i.e. each of these
spaces is a collection of quasifolds glued together in an suitable way. A
quasifold is a space locally modelled on modulo the action of a
discrete, possibly infinite, group. The way strata are glued to each other also
involves the action of an (infinite) discrete group. Each stratified space is
endowed with a symplectic structure and a moment mapping having the property
that its image gives the original polytope back. These spaces may be viewed as
a natural generalization of symplectic toric varieties to the nonrational
setting.Comment: LaTeX, 29 pages. Revised version: TITLE changed, reorganization of
notations and exposition, added remarks and reference
On the existence of star products on quotient spaces of linear Hamiltonian torus actions
We discuss BFV deformation quantization of singular symplectic quotient
spaces in the special case of linear Hamiltonian torus actions. In particular,
we show that the Koszul complex on the moment map of an effective linear
Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of
Arms, Gotay and Jennings for linear Hamiltonian torus actions. It follows that
reduced spaces of such actions admit continuous star products.Comment: 9 pages, 4 figures, uses psfra
Complexification of Gauge Theories
For the case of a first-class constrained system with an equivariant momentum
map, we study the conditions under which the double process of reducing to the
constraint surface and dividing out by the group of gauge transformations
is equivalent to the single process of dividing out the initial phase space by
the complexification of . For the particular case of a phase space
action that is the lift of a configuration space action, conditions are found
under which, in finite dimensions, the physical phase space of a gauge system
with first-class constraints is diffeomorphic to a manifold imbedded in the
physical configuration space of the complexified gauge system. Similar
conditions are shown to hold in the infinite-dimensional example of Yang-Mills
theories. As a physical application we discuss the adequateness of using
holomorphic Wilson loop variables as (generalized) global coordinates on the
physical phase space of Yang-Mills theory.Comment: 25pp., LaTeX, Syracuse SU-GP-93/6-2, Lisbon DF/IST 6.9
Non-commutative integrable systems on -symplectic manifolds
In this paper we study non-commutative integrable systems on -Poisson
manifolds. One important source of examples (and motivation) of such systems
comes from considering non-commutative systems on manifolds with boundary
having the right asymptotics on the boundary. In this paper we describe this
and other examples and we prove an action-angle theorem for non-commutative
integrable systems on a -symplectic manifold in a neighbourhood of a
Liouville torus inside the critical set of the Poisson structure associated to
the -symplectic structure
Morse theory of the moment map for representations of quivers
The results of this paper concern the Morse theory of the norm-square of the
moment map on the space of representations of a quiver. We show that the
gradient flow of this function converges, and that the Morse stratification
induced by the gradient flow co-incides with the Harder-Narasimhan
stratification from algebraic geometry. Moreover, the limit of the gradient
flow is isomorphic to the graded object of the
Harder-Narasimhan-Jordan-H\"older filtration associated to the initial
conditions for the flow. With a view towards applications to Nakajima quiver
varieties we construct explicit local co-ordinates around the Morse strata and
(under a technical hypothesis on the stability parameter) describe the negative
normal space to the critical sets. Finally, we observe that the usual Kirwan
surjectivity theorems in rational cohomology and integral K-theory carry over
to this non-compact setting, and that these theorems generalize to certain
equivariant contexts.Comment: 48 pages, small revisions from previous version based on referee's
comments. To appear in Geometriae Dedicat
Classical and quantum ergodicity on orbifolds
We extend to orbifolds classical results on quantum ergodicity due to
Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive,
first-order self-adjoint elliptic pseudodifferential operator P on a compact
orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow
of p implies quantum ergodicity for the operator P. We also prove ergodicity of
the geodesic flow on a compact Riemannian orbifold of negative sectional
curvature.Comment: 14 page
Semitoric integrable systems on symplectic 4-manifolds
Let M be a symplectic 4-manifold. A semitoric integrable system on M is a
pair of real-valued smooth functions J, H on M for which J generates a
Hamiltonian S^1-action and the Poisson brackets {J,H} vanish. We shall
introduce new global symplectic invariants for these systems; some of these
invariants encode topological or geometric aspects, while others encode
analytical information about the singularities and how they stand with respect
to the system. Our goal is to prove that a semitoric system is completely
determined by the invariants we introduce
On Non-Abelian Symplectic Cutting
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact
groups. By using a degeneration based on the Vinberg monoid we give, in good
cases, a global quotient description of a surgery construction introduced by
Woodward and Meinrenken, and show it can be interpreted in algebro-geometric
terms. A key ingredient is the `universal cut' of the cotangent bundle of the
group itself, which is identified with a moduli space of framed bundles on
chains of projective lines recently introduced by the authors.Comment: Various edits made, to appear in Transformation Groups. 28 pages, 8
figure
Gauging and symplectic blowing up in nonlinear sigma-models: I. point singularities
In this paper a two dimensional non-linear sigma model with a general
symplectic manifold with isometry as target space is used to study symplectic
blowing up of a point singularity on the zero level set of the moment map
associated with a quasi-free Hamiltonian action. We discuss in general the
relation between symplectic reduction and gauging of the symplectic isometries
of the sigma model action. In the case of singular reduction, gauging has the
same effect as blowing up the singular point by a small amount. Using the
exponential mapping of the underlying metric, we are able to construct
symplectic diffeomorphisms needed to glue the blow-up to the global reduced
space which is regular, thus providing a transition from one symplectic sigma
model to another one free of singularities.Comment: 32 pages, LaTex, THEP 93/24 (corrected and expanded(about 5 pages)
version