1,223 research outputs found
Absorption and optimal plasmonic resonances for small ellipsoidal particles in lossy media
A new simplified formula is derived for the absorption cross section of small dielectric ellipsoidal particles embedded in lossy media. The new expression leads directly to a closed form solution for the optimal conjugate match with respect to the surrounding medium, i.e. the optimal permittivity of the ellipsoidal particle that maximizes the absorption at any given frequency. This defines the optimal plasmonic resonance for the ellipsoid. The optimal conjugate match represents a metamaterial in the sense that the corresponding optimal permittivity function may have negative real part (inductive properties), and can not in general be implemented as a passive material over a given bandwidth. A necessary and sufficient condition is derived for the feasibility of tuning the Drude model to the optimal conjugate match at a single frequency, and it is found that all the prolate spheroids and some of the (not too flat) oblate spheroids can be tuned into optimal plasmonic resonance at any desired center frequency. Numerical examples are given to illustrate the analysis. Except for the general understanding of plasmonic resonances in lossy media, it is also anticipated that the new results can be useful for feasibility studies with e.g. the radiotherapeutic hyperthermia based methods to treat cancer based on electrophoretic heating in gold nanoparticle suspensions using microwave radiation
Automotive Threat Assessment Design for Combined Braking and Steering Maneuvers
The active safety systems available on the passenger cars market today, automatically deploy automated safety interventions in situations where the driver is in need of assistance. In this paper, we consider the process of determining whether such interventions are needed. In particular, we design a threat assessment method which evaluates the risk that the vehicle will either leave the road or its maneuverability will be significantly reduced within a finite time horizon. The proposed threat assessment method accounts for combined braking and steering maneuvers, which results in a nonlinear dynamical vehicle behavior. We formulate the threat assessment problem as a nonconvex constraint satisfaction problem and implement an algorithm that solves it through interval-based consistency techniques. Experimental validation of the proposed approach indicates that constraint violation can be predicted, while avoiding the detection of false threats
Parameter studies on optimal absorption and electrophoretic resonances in lossy media
This paper summarizes and elaborates on some new results on the optimal absorption in small spherical suspensions based on electrophoretic (plasmonic) resonances and lossy surrounding media. The main application here is to study the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions and its potential to achieve GNP targeted hyperthermia in cancer therapy. Numerical parameter studies are included to demonstrate the analysis approach
Subunit and small-molecule interaction of ribonucleotide reductases via surface plasmon resonance biosensor analyses
Ribonucleotide reductase (RNR) synthesizes deoxyribonucleotides for DNA replication and repair and is controlled by sophisticated allosteric regulation involving differential affinity of nucleotides for regulatory sites. We have developed a robust and sensitive method for coupling biotinylated RNRs to surface plasmon resonance streptavidin biosensor chips via a 30.5 Å linker. In comprehensive studies on three RNRs effector nucleotides strengthened holoenzyme interactions, whereas substrate had no effect on subunit interactions. The RNRs differed in their response to the negative allosteric effector dATP that binds to an ATP-cone domain. A tight RNR complex was formed in Escherichia coli class Ia RNR with a functional ATP cone. No strengthening of subunit interactions was observed in the class Ib RNR from the human pathogen Bacillus anthracis that lacks the ATP cone. A moderate strengthening was seen in the atypical Aeromonas hydrophila phage 1 class Ia RNR that has a split catalytic subunit and a non-functional ATP cone with remnant dATP-mediated regulatory features. We also successfully immobilized a functional catalytic NrdA subunit of the E.coli enzyme, facilitating study of nucleotide interactions. Our surface plasmon resonance methodology has the potential to provide biological insight into nucleotide-mediated regulation of any RNR, and can be used for high-throughput screening of potential RNR inhibitor
A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars
General relativistic superfluid neutron stars have a significantly more
intricate dynamics than their ordinary fluid counterparts. Superfluidity allows
different superfluid (and superconducting) species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of
motion contain as many fluid element velocities as superfluid species. Whenever
the particles of one superfluid interact with those of another, the momentum of
each superfluid will be a linear combination of both superfluid velocities.
This leads to the so-called entrainment effect whereby the motion of one
superfluid will induce a momentum in the other superfluid. We have constructed
a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistic mean field model
for the nucleons and their interactions. In this context there are two notions
of ``relativistic'': relativistic motion of the individual nucleons with
respect to a local region of the star (i.e. a fluid element containing, say, an
Avogadro's number of particles), and the motion of fluid elements with respect
to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the
supranuclear densities in the core of a neutron star can make the nucleons
themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly-rotating superfluid neutron star
configurations, a distinguishing characteristic being that the neutrons can
rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR
Характеристика сили нервових процесів у плавців
OBJECTIVE: Higher levels of the novel inflammatory marker pentraxin 3 (PTX3) predict cardiovascular mortality in patients with chronic kidney disease (CKD). Yet, whether PTX3 predicts worsening of kidney function has been less well studied. We therefore investigated the associations between PTX3 levels, kidney disease measures and CKD incidence. METHODS: Cross-sectional associations between serum PTX3 levels, urinary albumin/creatinine ratio (ACR) and cystatin C-estimated glomerular filtration rate (GFR) were assessed in two independent community-based cohorts of elderly subjects: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, n = 768, 51% women, mean age 75 years) and the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 651, mean age 77 years). The longitudinal association between PTX3 level at baseline and incident CKD (GFR <60 mL( ) min(-1) 1.73 m(-) ²) was also analysed (number of events/number at risk: PIVUS 229/746, ULSAM 206/315). RESULTS: PTX3 levels were inversely associated with GFR [PIVUS: B-coefficient per 1 SD increase -0.16, 95% confidence interval (CI) -0.23 to -0.10, P < 0.001; ULSAM: B-coefficient per 1 SD increase -0.09, 95% CI -0.16 to -0.01, P < 0.05], but not ACR, after adjusting for age, gender, C-reactive protein and prevalent cardiovascular disease in cross-sectional analyses. In longitudinal analyses, PTX3 levels predicted incident CKD after 5 years in both cohorts [PIVUS: multivariable odds ratio (OR) 1.21, 95% CI 1.01-1.45, P < 0.05; ULSAM: multivariable OR 1.37, 95% CI 1.07-1.77, P < 0.05]. CONCLUSIONS: Higher PTX3 levels are associated with lower GFR and independently predict incident CKD in elderly men and women. Our data confirm and extend previous evidence suggesting that inflammatory processes are activated in the early stages of CKD and drive impairment of kidney function. Circulating PTX3 appears to be a promising biomarker of kidney disease
How was it for you? Experiences of participatory design in the UK health service
Improving co-design methods implies that we need to understand those methods, paying attention to not only the effect of method choices on design outcomes, but also how methods affect the people involved in co-design. In this article, we explore participants' experiences from a year-long participatory health service design project to develop ‘Better Outpatient Services for Older People’. The project followed a defined method called experience-based design (EBD), which represented the state of the art in participatory service design within the UK National Health Service. A sample of participants in the project took part in semi-structured interviews reflecting on their involvement in and their feelings about the project. Our findings suggest that the EBD method that we employed was successful in establishing positive working relationships among the different groups of stakeholders (staff, patients, carers, advocates and design researchers), although conflicts remained throughout the project. Participants' experiences highlighted issues of wider relevance in such participatory design: cost versus benefit, sense of project momentum, locus of control, and assumptions about how change takes place in a complex environment. We propose tactics for dealing with these issues that inform the future development of techniques in user-centred healthcare design
Burns and Biofilms: Priority pathogens and in vivo models
Copyright © 2021 The Author(s). Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.British Society for Antimicrobial Chemotherapy BSAC-2018-0095; Innovate UK Smart Grant 37800, FRAME, Young European Research University Network Mobility Award, NC3Rs PhD Studentship NC/V001582/1; BBSRC New Investigator Award BB/V007823/1; Academy of Medical Sciences; Wellcome Trust; UK Government Department of Business, Energy and Industrial Strategy; British Heart Foundation/Diabetes UK Springboard Award [SBF006\1040]
- …